留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于K3FeO4负载的Fe–基载氧体反应性能模拟研究

穆林 张彬 张虎 吴迪 赵亮 尹洪超 东明

穆林, 张彬, 张虎, 吴迪, 赵亮, 尹洪超, 东明. 基于K3FeO4负载的Fe–基载氧体反应性能模拟研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60012-4
引用本文: 穆林, 张彬, 张虎, 吴迪, 赵亮, 尹洪超, 东明. 基于K3FeO4负载的Fe–基载氧体反应性能模拟研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60012-4
MU Lin, ZHANG Bin, ZHANG Hu, WU Di, ZHAO Liang, YIN Hong-chao, DONG Ming. Simulation study on modification of reaction performance for ferrite oxygen carrier based on K3FeO4 doping[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60012-4
Citation: MU Lin, ZHANG Bin, ZHANG Hu, WU Di, ZHAO Liang, YIN Hong-chao, DONG Ming. Simulation study on modification of reaction performance for ferrite oxygen carrier based on K3FeO4 doping[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60012-4

基于K3FeO4负载的Fe–基载氧体反应性能模拟研究

doi: 10.1016/S1872-5813(22)60012-4
基金项目: 国家自然科学基金(52176179)资助
详细信息
    通讯作者:

    Tel:13889636419, E-mail:l.mu@dlut.edu.cn

  • 中图分类号: TQ530

Simulation study on modification of reaction performance for ferrite oxygen carrier based on K3FeO4 doping

Funds: The project was supported by the National Natural Science Foundation of China (52176179)
More Information
  • 摘要: 本研究以密度泛函理论为基础,通过态密度、吸附能和活化能等电子结构性质,研究尖晶石结构的K3FeO4对Fe基载氧体反应性能的影响。结果表明,K3FeO4负载到α–Fe2O3(001)表面后,α–Fe2O3(001)表面微观电子结构发生改变,表面的Fe–O键长伸长,O–p轨道电子朝更高能级方向跃迁,氧原子电子活性提高。负载后,在三个晶格氧位处,CO与表面晶格氧反应的能垒均表现出降低趋势。这是因为负载K3FeO4能够提高表面氧原子活性,Fe–O键伸长使得断键更加容易,所需能量更少;此外,CO与K3FeO4中活性较强的氧原子成键,也与O2位原子形成新的C− O键,以双齿碳酸盐形式吸附在表面α–Fe2O3(001),进而释放并生成CO2
  • 图  1  化学链燃烧技术原理示意图

    Figure  1  Schematic diagram of chemical looping combustion technology

    图  2  本研究所建立的计算模型

    Figure  2  Calculation model established in the present study

    图  3  K3FeO4晶体、团簇及其在α–Fe2O3(001)表面的负载过程

    Figure  3  K3FeO4 crystals, clusters and loading process on the surface of α–Fe2O3(001)

    图  4  负载前后三个氧位Fe–O键键长变化

    Figure  4  Variation of bond length of Fe–O bond at three oxygen sites before and after loading

    图  5  负载前后O1、O2和O3的p轨道态密度图

    Figure  5  p–orbital density of states of O1, O2, and O3 before and after loading

    图  6  负载前后CO在α–Fe2O3(001)表面O1、O2和O3处的吸附构型

    Figure  6  Adsorption configurations of CO on the O1, O2, and O3 sites of α–Fe2O3(001) surface before and after loading

    图  7  K3FeO4团簇负载前后O1处反应路径示意图

    Figure  7  Reaction path diagram at O1 before and after K3FeO4 cluster loading

    图  8  K3FeO4团簇负载前后O2处反应路径示意图

    Figure  8  Reaction path diagram at O2 before and after K3FeO4 cluster loading

    图  9  K3FeO4团簇负载前后 O3处反应路径示意图

    Figure  9  Reaction path diagram at O3 before and after K3FeO4 cluster loading

    表  1  结构优化和实验得到的α–Fe2O3晶体结构参数

    Table  1  Structure optimization and experimental parameters of α–Fe2O3 crystal structure

    Structure parametera = b (nm)c (nm)α = β (°)γ (°)
    EXPa 0.5035 1.3720 90.0 120.0
    GGA/PBE 0.5226 1.4067 90.0 120.0
    Relative deviation/% 0.380 0.252 0.00 0.00
    a EXP is the abbreviation of experimental values and from the Materials Studio database
    下载: 导出CSV

    表  2  K3FeO4团簇负载前后的CO几何参数

    Table  2  Geometric parameters of CO before and after K3FeO4 cluster loading

    PositionO–CO/nmC–O/nmEads/eV
    before loadingafter loadingbefore loadingafter loadingbefore loadingafter loading
    O1 0.3702 0.3298 0.1155 0.1162 –0.61 –0.73
    O2 0.2792 0.1380 0.1159 0.1260 –0.11 –3.57
    O3 0.2889 0.2832 0.1155 0.1159 –0.67 –0.81
    下载: 导出CSV
  • [1] Hong H, Jin H. A Novel Solar Thermal Cycle with Chemical Looping Combustion[J]. Int J Green Energy,2005,2(4):397−407. doi: 10.1080/01971520500288022
    [2] ZHAO H, TIAN X, MA J, CHEN X, SU M, ZHENG C, WANG Y. Chemical Looping Combustion of Coal in China: Comprehensive Progress, Remaining Challenges, and Potential Opportunities[J]. Energy Fuels,2020,34(6):6696−6734. doi: 10.1021/acs.energyfuels.0c00989
    [3] 梁志永, 董长青, 覃吴, 林常枫. 化学链燃烧中铁基载氧体性能优化研究综述[J]. 现代化工,2017,37(2):36−40.

    LIANG Zhi–yong, DONG Chang–qing, QIN Wu, LIN Chang–feng. Review on optimization of iron based oxygen carriers in chemical–looping combustion[J]. Mod Chem Ind,2017,37(2):36−40.
    [4] ZHANG Y, DOROODCHI E, MOGHTADERI B. Reduction kinetics of Fe2O3/Al2O3 by ultralow concentration methane under conditions pertinent to chemical looping combustion [J]. Energy Fuels, 2015, 29(1): 3 37–345.
    [5] GE H, SHEN L, GU H, JIANG S. Effect of co–precipitation and impregnation on K–decorated Fe2O3/Al2O3 oxygen carrier in Chemical Looping Combustion of bituminous coal[J]. Chem Eng J,2015,262:1065−1076. doi: 10.1016/j.cej.2014.10.021
    [6] 沈来宏, 周玉飞, 顾海明, 牛欣, 葛晖骏, 肖军. 基于草木灰修饰Fe基载氧体的化学链燃烧实验[J]. 热科学与技术,2015,14(04):305−313.

    SHEN Lai–hong, Zhou Yu–fei, GU Hai–ming, NIU Xin, GE Hui–jun, XIAO Jun. Experimental investigation of chemical looping combustion of Fe–based oxygen carrier modified by plant ash[J]. J Therm Sci Technol,2015,14(04):305−313.
    [7] 张思文, 沈来宏, 肖军, 顾海明, 宋涛. 基于碱金属和过渡金属修饰铁矿石载氧体的煤催化燃烧[J]. 燃料化学学报,2012,40(10):1179−1187. doi: 10.3969/j.issn.0253-2409.2012.10.005

    ZHANG Si–wen, SHEN Lai–hong, XIAO Jun, GU Hai–ming, SONG Tao. Catalytic combustion of coal using alkali and transition metals loaded on iron ore oxygen carrier[J]. J Fuel Chem Technol,2012,40(10):1179−1187. doi: 10.3969/j.issn.0253-2409.2012.10.005
    [8] 梅艳钢, 王志青, 高松平, 郑洪岩, 张郃, 房倚天. 碱金属与碱土金属在煤炭热转化过程中的影响研究进展[J]. 燃料化学学报,2020,48(4):385−394. doi: 10.3969/j.issn.0253-2409.2020.04.001

    MEI Yan–gang, WANG Zhi–qing, GAO Song–ping, ZHENG Hong–yan, ZHANG He, FANG Yi–tian. Research progress of the influence of alkali metals and alkaline earth metals on coal thermal chemical conversion[J]. J Fuel Chem Technol,2020,48(4):385−394. doi: 10.3969/j.issn.0253-2409.2020.04.001
    [9] QIN Q, LIU H, ZHANG R, LING L, FAN M, WANG B. Application of density functional theory in studying CO2 capture with TiO2–supported K2CO3 being an example[J]. Appl Energy,2018,231:167−178. doi: 10.1016/j.apenergy.2018.09.114
    [10] DONG C, SHENG S, QIN W, QIANG L, YING Z, WANG X, ZHANG J. Density functional theory study on activity of α–Fe2O3 in chemical–looping combustion system[J]. Appl Sur Sci,2011,257(20):8647−8652. doi: 10.1016/j.apsusc.2011.05.042
    [11] FENG Y, WANG N, GUO X, ZHANG S. Dopant screening of modified Fe2O3 oxygen carriers in chemical looping hydrogen production[J]. Fuel,2020,262:116489. doi: 10.1016/j.fuel.2019.116489
    [12] YAN J, SHEN L, OU Z, WU J, JIANG S, GU H. Enhancing the performance of iron ore by introducing K and Na ions from biomass ashes in a CLC process[J]. Energy,2019,167:168−180. doi: 10.1016/j.energy.2018.09.075
    [13] MU L, HUO Z Y, CHU F, WANG Z, SHANG Y, YIN H, XU T. Assessment of the Redox Characteristics of Iron Ore by Introducing Biomass Ash in the Chemical Looping Combustion Process: Biomass Ash Type, Constituent, and Operating Parameters[J]. ACS Omega,2021,6(33):21676−21689. doi: 10.1021/acsomega.1c03113
    [14] WHITE J A, BIRD D M. Implementation of gradient–corrected exchange–correlation potentials in Car–Parrinello total–energy calculations[J]. Phys Rev B,1994,50(7):4954−4957. doi: 10.1103/PhysRevB.50.4954
    [15] ZHANG X, SONG X, SUN Z, LI P, YU J. Density functional theory study on the mechanism of calcium sulfate reductive de composition by carbon monoxide[J]. Ind & Eng Chem Res,2012,51(18):6563−6570.
    [16] YANG S, LI S, FILIMONOV S N. Fuentes–Cabrera M, LIU W. Principles of design for substrate–supported molecular switches based on physisorbed and chemisorbed states[J]. ACS Appl. Mater. Interfaces,2018,10:26772−26780. doi: 10.1021/acsami.8b07568
    [17] LIN C, WU Q, DONG C. Reduction effect of α–Fe2O3 on carbon deposition and CO oxidation during chemical–looping combustion[J]. Chem Eng J,2016,301:257−265. doi: 10.1016/j.cej.2016.04.136
    [18] 袁妮妮, 白红存, 安梅, 胡修德, 郭庆杰. 化学链过程中Cu低浓度掺杂改性Fe–基载氧体反应性能: 实验与理论模拟[J]. 化工学报,2020,71(11):5294−5302.

    YUAN Ni–ni, BAI Hong–cun, AN Mei, HU Xiu–de, GUO Qing–jie. Reactivity of low–concentration Cu–doped modified Fe–based oxygen carrier in chemical looping: experiments and theoretical simulations[J]. J Chem Ind Eng,2020,71(11):5294−5302.
    [19] LIU S, XIANG D, XU Y, SUN Z, CAO Y. Relationship between electronic properties of Fe3O4 substituted by Ca and Ba and their reactivity in chemical looping process: A first–principles study[J]. Appl Energy,2017,202:550−557. doi: 10.1016/j.apenergy.2017.05.178
    [20] YAN G, GAO Z, ZHAO M, MA K, DING X. Mechanism study on CO2 reforming of methane over platinum cluster doped graphene: A DFT calculation[J]. Mol Catal,2020,497:111205. doi: 10.1016/j.mcat.2020.111205
    [21] DONG C, SHENG S, QIN W, LIU Q, ZHAO Y, WANG X, ZHANG J. Density functional theory study on activity of α–Fe2O3 in chemical–looping combustion system[J]. Appl Surf Sci,2011,257(20):8647−8652. doi: 10.1016/j.apsusc.2011.05.042
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  15
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-18
  • 修回日期:  2022-03-23
  • 网络出版日期:  2022-04-15

目录

    /

    返回文章
    返回