留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nanosized amorphous nickel-boron alloy electrocatalysts for hydrogen evolution reaction under alkaline conditions

WU Mei-xia CHEN Yan LI Sen YANG Xiao-meng LI Jing-wei SHANG Jian-peng GUO Yong LI Zuo-peng

武美霞, 陈妍, 李森, 杨肖萌, 李经纬, 尚建鹏, 郭永, 李作鹏. 纳米非晶镍硼合金的合成及其碱性电催化析氢性能研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60052-5
引用本文: 武美霞, 陈妍, 李森, 杨肖萌, 李经纬, 尚建鹏, 郭永, 李作鹏. 纳米非晶镍硼合金的合成及其碱性电催化析氢性能研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60052-5
WU Mei-xia, CHEN Yan, LI Sen, YANG Xiao-meng, LI Jing-wei, SHANG Jian-peng, GUO Yong, LI Zuo-peng. Nanosized amorphous nickel-boron alloy electrocatalysts for hydrogen evolution reaction under alkaline conditions[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60052-5
Citation: WU Mei-xia, CHEN Yan, LI Sen, YANG Xiao-meng, LI Jing-wei, SHANG Jian-peng, GUO Yong, LI Zuo-peng. Nanosized amorphous nickel-boron alloy electrocatalysts for hydrogen evolution reaction under alkaline conditions[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60052-5

纳米非晶镍硼合金的合成及其碱性电催化析氢性能研究

doi: 10.1016/S1872-5813(22)60052-5

Nanosized amorphous nickel-boron alloy electrocatalysts for hydrogen evolution reaction under alkaline conditions

More Information
  • 摘要: 可持续能源电解水制氢是实现零碳排放氢经济的有效途径。碱性环境下的电催化析氢反应(HER)是电解水技术主要的能量转换过程之一。开发高活性、低成本的非贵金属催化剂是碱性电解水析氢反应的关键所在。本文以壳寡糖为保护剂,采用简单易行的化学还原法制备了超小纳米NiB非晶合金电催化剂并用于碱性析氢反应。采用X射线衍射(XRD)、透射电子显微镜(TEM)、电感耦合等离子体分析(ICP)和X射线光电子能谱(XPS)等多种表征方法研究了不同条件下获得的催化剂结构组成及特征物性参数。结果表明,壳寡糖的加入可以有效调控纳米粒子的平均粒径为4 nm左右,提升活性比表面积,增加活性位点,从而提高其电催化活性。所制备的NiB-COS在1.0 M NaOH中表现出优异的HER性能,析氢反应起始过电位仅为15.1 mV,在电流密度为10 mA·cm−2时HER过电位为49.4 mV,Tafel斜率为86.1 mV·dec−1,为制备高活性、低成本、简单易得的HER电催化剂提供了重要策略。
  • Figure  1  XRD patterns of chitosan oligosaccharides (a), NiB-COS (b) and NiB (c).

    Figure  2  TEM images of NiB(a) and NiB-COS(b)

    Figure  3  The XPS spectra of NiB-COS: (a) Ni 2p; (b)B 1s.

    Figure  4  (a) Polarization curves and (b) corresponding Tafel plots of the different elechtrocatalysts in 1 mol/L NaOH alkaline solution.

    Figure  5  (a) CV curves of NiB electrocatalysts at different scan rate; (b) CV curves of NiB-COS electrocatalysts at different scan rate; (c) Linear fitting of the capacitance currents versus CVs scan rates; (d) EIS of NiB and NiB-COS electrocatalysts

    Figure  6  Electrochemical stability of the electrocatalysts in 1 mol/L NaOH solution: (a) Pt black; (b) NiB; (c) NiB-COS

    Table  1  Surface areas and bulk composition of the NiB and NiB-COS catalysts

    CatalystCompositionBET surface area (m2·g−1 )
    NiBNi69.5B30.529.5
    NiB-COSNi74.5B25.568.6
    下载: 导出CSV

    Table  2  HER performance of NiB-based electrocatalysts in basic solution.

    ElectrolyteOverpotential (mV)NiB-COS
    Pt black
    NiB-COS/ NiBNiB/ NiBNiB
    Onset overpotential (mV)15.156.5122.9349.7355.8
    Basic conditionOverpotential (mV)
    10 mA/cm2
    49.4137.0170.9387.1398.5
    Tafel slope (mV/decade)86.1120.294.577.366.4
    下载: 导出CSV
  • [1] WANG H Y, WENG C C, REN J T, YUAN Z Y. An overview and recent advances in electrocatalysts for direct seawater splitting[J]. Front Chem Sci Eng,2021,15(6):1408−1426. doi: 10.1007/s11705-021-2102-6
    [2] ZHENG Y, JIAO Y, JARONIEC M, QIAO S Z. Advancing the electrochemistry of the hydrogen evolution reaction through combining experiment and theory[J]. Angew Chem Int Ed,2015,54:52−65. doi: 10.1002/anie.201407031
    [3] DEBE M K. Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature,2012,486:43−51. doi: 10.1038/nature11115
    [4] SHARMA S, GHOSHAL S K. Hydrogen the future transportation fuel from production to applications[J]. Renew Sustain Energy Rev,2015,43:1151−1158. doi: 10.1016/j.rser.2014.11.093
    [5] NIKOLAIDIS P, POULLIKKAS A. A comparative overview of hydrogen production processes[J]. Renew Sustain Energy Rev,2017,67:597−611. doi: 10.1016/j.rser.2016.09.044
    [6] TRIPATHY R K, SAMANTARA A K, BEHERA J N. Metal-organic framework (MOF)-derived amorphous nickel boride: an electroactive material for electrochemical energy conversion and storage application[J]. Sustain Energy Fuels,2021,5(4):1184−1193. doi: 10.1039/D0SE01831G
    [7] SCHMIDT T J, ROSS JR P N, MARKOVIC N M. Temperature dependent surface electrochemistry on Pt single crystals in alkaline electrolytes Part 2. The hydrogen evolution/oxidation reaction[J]. J Electro Chem,2002,524−525,252−260.
    [8] MARKOVIC N M, GRGUR B N, LUCAS C A, ROSS P N. Electrooxidation of CO and H2/CO mixtures on Pt(111) in acid Solutions[J]. J Phys Chem B,1999,103:487−495. doi: 10.1021/jp983177c
    [9] YANG Y, XU X, WANG X. Synthesis of Mo-based nanostructures from organic-inorganic hybrid with enhanced electrochemical for water splitting[J]. Sci China Mater,2015,58:775−784. doi: 10.1007/s40843-015-0088-4
    [10] DOU S, TAO L, HUO J, WANG S Y, DAI L M. Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis[J]. Energ Environ Sci,2016,9:l320−l326.
    [11] CABÁN-ACEVEDO M, STONE M L, SCHMIDT J R, THOMAS J G, DING Q, CHANG H C, TSAI M L, He J H, JIN S. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide[J]. Nat Mater,2015,14:1245−1251. doi: 10.1038/nmat4410
    [12] MORALES-GUIO C G, HU X L. Amorphous molybdenum sulfides as hydrogen evolution catalysts[J]. Acc Chem Res,2014,47:2671−2681.
    [13] WU Z, GUO, W JIE, RONG L, WANG D. Hierarchically porous electrocatalyst with vertically aligned defect-rich CoMoS nanosheets for HER in alkaline medium[J]. ACS Appl Mater Interfaces,2017,9:5288−5294. doi: 10.1021/acsami.6b15244
    [14] MA T Y, DAI S, JARONIEC M, SHI Z Q. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes[J]. J Am Chem Soc,2014,l36:13925−l3931.
    [15] LIU Q, TIAN J Q, CUI W, JIANG P. Carbon nanotubes decorated with CoP nanocrystals a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution[J]. Angew Chem Int Ed,2014,53:6710−6714. doi: 10.1002/anie.201404161
    [16] BAO J, ZHANG X D, FAN B, ZHANG J J, ZHOU M, YANG W L, HU X, WANG H, PAN B C, XIE Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation[J]. Angew Chem Int Ed,2015,54:7399−7404. doi: 10.1002/anie.201502226
    [17] ZHU Y P, LIU Y P, REN T Z, YUAN Z Y. Self-supported cobalt phosphide mesoporous nanorod arrays a flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation[J]. Adv Funct Mater,2015,25:7337−7347. doi: 10.1002/adfm.201503666
    [18] YAN Y, XIA B Y, GE X M, LIU Z L, FISHER A, WANG X. A flexible electrode based on iron phosphidenanotubesfo roverallwatersplitting[J]. Chem Eur J,2015,21:18062−18067. doi: 10.1002/chem.201503777
    [19] WONTERGHEM J V, MORUP S, KOCH C J W, CHARLES S W, WELLS S. Formation of ultra-fine amorphous alloy particles by reduction in aqueous solution[J]. Nature,1986,322:622−62. doi: 10.1038/322622a0
    [20] WANG Y D, AI X P, YANG H X. Electrochemical Hydrogen Storage Behaviors of Ultrasmall Amorphous Co-B Alloy Particles[J]. Chem Mater.,2004,16:5194−5197. doi: 10.1021/cm049252f
    [21] LIU Z, LI Z L, WANG F, LIU J J, JI J, PARK K C, ENDO M. Electroless preparation and characterization of Ni-B nanoparticles supported on multi-walled carbon nanotubes and their catalytic activity towards hydrogenation of styrene[J]. Mater Res Bull,2012,47:338−343. doi: 10.1016/j.materresbull.2011.11.010
    [22] WU Z J, GE S H, ZHANG M H, LI W, MU S C, TAO K Y. Controlled synthesis of supported nickel boride catalyst using electroless plating[J]. J Phys Chem C,2007,111:8587−8593. doi: 10.1021/jp070096k
    [23] PARKS G L, PEASE M L, BURNS A W, LAYMAN K A, BUSSELL M E, WANG X, HANSON J, RODRIGUEZ J A. Characterization and hydrodesulfurization properties of catalysts derived from amorphous metal-boron materials[J]. J Catal,2007,246:277−292. doi: 10.1016/j.jcat.2006.12.009
    [24] SKRABALAK S E, SUSLICK K S. On the Possibility of Metal Borides for Hydrodesulfurization[J]. Chem Mater,2006,18:3103−3107. doi: 10.1021/cm060341x
    [25] LEWANDOWSKI M. Hydrotreating activity of bulk NiB alloy in model reaction of hydrodenitrogenation of carbazole[J]. Appl Catal B,2015,168:322−332.
    [26] ZENG M, WANG H, ZHAO C, WEI J K, QI K, WANG W L, BAI X D. Nanostructured amorphous nickel boride for high efficiency electrocatalytic hydrogen evolution over a broad pH range[J]. Chem Cat Chem,2016,8:708−712.
    [27] LI Z P, SHANG J P, SU C N, ZHANG S B, WU M X, GUOY. Preparation of amorphous NiP-based catalysts for hydrogen evolution reactions[J]. J Fuel Chem Technol,2018,46(4):473−478. doi: 10.1016/S1872-5813(18)30021-5
    [28] DENG K, REN T, XU Y, DENG K, REN T L, XU Y, LIU S L, DAI Z C, WANG Z Q, LI X N, LIANG WANG, WANG H J. Crystalline core-amorphous shell heterostructures: epitaxial assembly of NiB nanosheets onto PtPd mesoporous hollow nanopolyhedra for enhanced hydrogen evolution electrocatalysis[J]. J Mater Chem A,2020,8(18):8927−8933. doi: 10.1039/D0TA02537B
    [29] LEGRAND J, TALEB A, GOTA S, GUITTET M J, PETIT C. Synthesis and XPS Characterization of Nickel Boride Nanoparticles[J]. Langmuir,2002,18:4131−4137. doi: 10.1021/la0117247
    [30] HUANG T, SHEN T, GONG M, DENG S F, LAI C L, LIU X P, ZHAO T H, TENG L, WANG D L. Ultrafine Ni-B nanoparticles for efficient hydrogen evolution reaction[J]. Chin J Catal,2019,40(12):1867−1873. doi: 10.1016/S1872-2067(19)63331-0
    [31] ZHANG R, LIU H, WANG C, WANG L C, YANG Y J, GUO Y H. Electroless plating of transition metal boride with high boron content as superior HER electrocatalyst[J]. Chem Cat Chem,2020,12(11):3068−3075.
    [32] BOCKRIS J O M, POTTER E C. The mechanism of the cathodic hydrogen evolution reaction[J]. J Electrochem Soc,1952,99:169−186. doi: 10.1149/1.2779692
    [33] POPCZUN E J, MCKONE J R, READ C G, BIACCHI A J, WILTROUT A M, LEWIS N S, SCHAAK R E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction[J]. J Am Chem Soc,2013,135(25):9267−9270. doi: 10.1021/ja403440e
    [34] PAN Y, HU W, LIU D, LIU Y, LIU C. Carbon nanotubes decorated with nickel phosphide nanoparticles as efficient nanohybrid electrocatalysts for the hydrogen evolution reaction[J]. J Mater Chem A,2015,3(24):13087−13094. doi: 10.1039/C5TA02128F
    [35] PAN Y, LIU Y, LIU C. Nanostructured nickel phosphide supported on carbon nanospheres: Synthesis and application as an efficient electrocatalyst for hydrogen evolution[J]. J Power Sources,2015,285:169−177. doi: 10.1016/j.jpowsour.2015.03.097
    [36] LIN Y, ZHANG J, PAN Y, LIU Y. Nickel phosphide nanoparticles decorated nitrogen and phosphorus co-doped porous carbon as efficient hybrid catalyst for hydrogen evolution[J]. Appl Surf Sci,2017,422:828−837. doi: 10.1016/j.apsusc.2017.06.102
    [37] PAN Y, YANG N, CHEN Y, LIN Y, LI Y, LIU Y, LIU C. Nickel phosphide nanoparticles nitrogen-doped graphene hybrid as an efficient catalyst for enhanced hydrogen evolution activity[J]. J Power Sources,2015,297:45−52. doi: 10.1016/j.jpowsour.2015.07.077
    [38] WANG P, PU Z, LI Y, WU L, TU Z, JIANG M, KOU Z, SAANA AMIINU I, MU S. Iron-doped nickel phosphide nanosheet arrays: An efficient bifunctional electrocatalyst for water splitting[J]. ACS Appl Mater Interfaces,2017,9(31):26001−26007. doi: 10.1021/acsami.7b06305
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  0
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-17
  • 修回日期:  2022-06-06
  • 网络出版日期:  2022-07-19

目录

    /

    返回文章
    返回