留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TG-FTIR研究煤油共热解产物逸出行为

周晓东 吴浩 刘景梅 黄雪莉 刘婷 钟梅 马凤云

周晓东, 吴浩, 刘景梅, 黄雪莉, 刘婷, 钟梅, 马凤云. TG-FTIR研究煤油共热解产物逸出行为[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(23)60393-7
引用本文: 周晓东, 吴浩, 刘景梅, 黄雪莉, 刘婷, 钟梅, 马凤云. TG-FTIR研究煤油共热解产物逸出行为[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(23)60393-7
ZHOU Xiaodong, WU Hao, LIU Jingmei, HUANG Xueli, Liu Ting, ZHONG Mei, MA Fengyun. Co-pyrolysis behavior of Tahe residuum and Naomaohu coal[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(23)60393-7
Citation: ZHOU Xiaodong, WU Hao, LIU Jingmei, HUANG Xueli, Liu Ting, ZHONG Mei, MA Fengyun. Co-pyrolysis behavior of Tahe residuum and Naomaohu coal[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(23)60393-7

TG-FTIR研究煤油共热解产物逸出行为

doi: 10.1016/S1872-5813(23)60393-7
基金项目: 碳基能源资源化学与利用国家重点实验室重点专项、国家自然科学基金(22279110)和中央引导地方科技发展专项和国家自然科学基金资助。
详细信息
    通讯作者:

    E-mail: liujm@xju.edu.cn

    zhongmei0504@126.com

  • 中图分类号: TQ536.1

Co-pyrolysis behavior of Tahe residuum and Naomaohu coal

Funds: The project was supported by the Special Project for State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, National Natural Science Foundation of China (22279110), and Special Fund Project for the Local Development of Science and Technology Guiding by the Central Government and National Natural Science Foundation of China.
  • 摘要: 煤油共液化过程中煤与重油先发生共热解,而后加氢转化为小分子产品。因此,阐明重油对煤热解逸出产物的影响规律是调控共液化产物组成的重要热化学基础。本文采用TG-FTIR对比研究塔河渣油(AR)和淖毛湖煤(NMH)单独热解及其共热解过程,结合热解活化能计算,探索共热解过程中塔河渣油(AR)对淖毛湖煤(NMH)热解产物逸出产物的影响。结果表明,单独热解时AR先于NMH发生热解反应。两者1∶1(质量比)混合共热解时,相比于单独热解计算的理论值,最大失重峰温度前移7 ℃,失重率增加约3 wt.%,共热解平均活化能降低23.6 kJ/mol,表明AR率先热解会诱发NMH热解,降低热解反应能垒。TG-FTIR结果显示,AR产生的烷烃类自由基会与NMH热解产生的含氧自由基结合,形成醇、醚等烷基类含氧有机化合物,而抑制煤中羧基转化为CO2的过程。研究结果有助于揭示共液化反应过程中重油对煤液化产物组成的影响。
  • 图  1  热重平行实验比较

    Figure  1  Comparison of TG parallel experiments

    图  2  A50样品主要逸出峰面积对比

    Figure  2  Comparison of peak area for pyrolytic products of A50

    图  3  五个样品的表面形貌(放大倍数100倍)

    Figure  3  Surface morphology of five samples

    图  4  NMH与AR(a)、A25(b)、A50(c)和A75(d)的TG实验与计算曲线

    Figure  4  Exp. and Calc. of TG curves of NMH and AR (a), A25 (b), A50 (c) and A75 (d)

    图  5  NMH、AR和A50的TG-FTIR分析,(a)为TG-DTG曲线,(b)、(c)和(d)分别为NMH、AR和A50的TG-FTIR三维谱图

    Figure  5  TG-FTIR analysis of NMH, AR and A50, (a) is the TG-DTG curve, (b), (c) and (d) are the TG-FTIR 3-D spectra for pyrolysis of NMH, AR and A50 respectively

    图  6  第一类逸出峰的峰面积

    Figure  6  Peak area of first type characteristic peak

    图  7  第一类逸出峰的影响因子分布

    Figure  7  Distribution of Fy for first type of characteristic peak

    图  8  第二类逸出峰的峰面积分布

    Figure  8  Peak area of second type characteristic peak

    图  9  第二类逸出峰的影响因子

    Figure  9  Distribution of Fy for second type of characteristic peak

    图  10  不同转化率下NMH(a)、A25(b)、A50(c)、A75(d)和AR(e)的阿伦尼乌斯图

    Figure  10  Arrhenius diagram of NMH (a), A25 (b), A50 (c), A75 (d) and AR (e) at different conversion rate

    图  11  NMH与AR(a)、A25(b)、A50(c)和A75(d)热解活化能随转化率的变化曲线

    Figure  11  Curve of pyrolysis activation energy for NMH and AR (a), A25 (a), A50 (a), and A75 (d) changing with conversion

    表  1  NMH基本性质分析

    Table  1  Proximate and ultimate analyses of NMH

    Proximate analysis (wt.%)Ultimate analysis (daf, wt.%)Petrographical analysis (%)
    MadAdVdafCHNSOaH/CVitriniteInertiniteExinite
    10.369.4552.1274.655.961.290.3517.750.9667.72.929.4
    a: by difference.
    下载: 导出CSV

    表  2  AR常规分析

    Table  2  Basic properties of AR

    Mechanical impurities (wt.%)Viscosity (mm2/s, 100 ℃)Carbon residue (wt.%)Aromaticity
    0.03154.413.700.27
    SARA fraction (wt.%)Elemental analysis (wt.%, daf)
    SaArReAsCHNSOa
    45.3617.7921.4515.4085.8611.340.532.090.18
    SARA fractions: The saturates (Sa), aromatics (Ar), resins (Re), and asphaltenes (As) fractions.
    a: By difference.
    下载: 导出CSV

    表  3  五个样品的TG-DTG参数

    Table  3  TG-DTG parameters of five samples

    Sample
    /Fy
    Total weight
    loss
    (%)
    Degassing
    25 ~ 170 ℃
    Slow pyrolysis
    170 ~ 360 ℃
    Fast pyrolysis
    360 ~ 560 ℃
    Polycondensation
    560 ~ 800 ℃
    Peak
    temperature
    (℃)
    Weight loss rate
    (%/℃)
    Weight loss
    (%)
    Peak
    temperature
    (℃)
    Weight loss rate
    (%/℃)
    Weight loss
    (%)
    Peak
    temperature
    (℃)
    Weight loss rate
    (%/℃)
    Weight loss
    (%)
    Weight loss
    (%)
    NMH47.259.70.096.44.64400.2826.89.4
    A25Exp.59.960.10.099.214.64410.3229.56.6
    A25Calc.56.458.50.088.213.64450.2928.26.4
    Fy0.060.030.130.120.07−0.0090.100.050.1
    A50Exp.69.291.20.3313.021.94420.3329.84.2
    A50Calc.66.650.20.099.422.44490.3029.55.3
    Fy0.040.822.670.38−0.02−0.020.10.01−0.21
    A75Exp.78.4108.00.1414.02860.1931.24450.3630.52.7
    A75Calc.76.549.50.1112.52770.1831.14500.3429.93.2
    Fy0.021.180.270.120.030.060.00−0.010.060.02−0.16
    AR86.351.50.1214.6274.50.2339.84510.3629.92.2
    下载: 导出CSV
  • [1] 孙磊. 煤与重油共液化及其协同效应研究[D]. 安徽工业大学. 马鞍山, 2021.

    Sun L. Study on co-liquefaction of oil and coal by hydrogenation and itssynergistic effects[D]. Anhui University of Technology. Ma'anshan, 2021.
    [2] Ali M F, Ahmed S, Qureshi M S. Catalytic coprocessing of coal and petroleum residues with waste plastics to produce transportation fuels[J]. Fuel Processing Technology,2011,92(5):1109−1120. doi: 10.1016/j.fuproc.2011.01.006
    [3] 贾梦婷, 高山松, 张彦军, 等. 哈密煤与塔河重油共加氢反应性能的研究[J]. 燃料化学学报,2021,49(7):902−908. doi: 10.1016/S1872-5813(21)60037-3

    Jia M T, Gao S S, Zhang Y J, et al. Co-hydrogenation behavior of Hami coal with Tahe residue[J]. Journal of Fuel Chemistry and Technology,2021,49(7):902−908. doi: 10.1016/S1872-5813(21)60037-3
    [4] Malhotra R, McMillen D F. Relevance of cleavage of strong bonds in coal liquefaction[J]. Energy and Fuels,1993,7(2):227−233. doi: 10.1021/ef00038a012
    [5] Wu Z Q, Wang S Z, Zhao J, et al. Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal[J]. Bioresource Technology,2014,169:220−228. doi: 10.1016/j.biortech.2014.06.105
    [6] Li K, Ma X X, He R Y, et al. Co-pyrolysis characteristics and interaction route between low-rank coals and Shenhua coal direct liquefaction residue[J]. Chinese Journal of Chemical Engineering,2019,27(11):2815−2824. doi: 10.1016/j.cjche.2019.03.032
    [7] Quan C, Xu S P, An Y, et al. Co-pyrolysis of biomass and coal blend by TG and in a free fall reactor[J]. Journal of Thermal Analysis and Calorimetry,2014,117(2):817−823. doi: 10.1007/s10973-014-3774-7
    [8] 袁泉, 张乾, 梁丽彤, 等. 煤与催化裂化油浆共热解特性及气体逸出规律[J]. 煤炭学报,2021,46(8):2690−2698. doi: 10.13225/j.cnki.jccs.2020.0615

    Yuan Q, Zhang Q, Liang L T, et al. Characteristics of co-pyrolysis of coal and FCC slurry and the evolutionbehavior of the produced gases[J]. Journal of China Coal Society,2021,46(8):2690−2698. doi: 10.13225/j.cnki.jccs.2020.0615
    [9] Ovalles C, Rogel E, Hajdu P, et al. Predicting coke morphology in Delayed Coking from feed characteristics[J]. Fuel,2020,263:116739. doi: 10.1016/j.fuel.2019.116739
    [10] Prajapati R, Kohli K, Maity S K. Residue upgradation with slurry phase catalyst: Effect of feedstock properties[J]. Fuel,2019,239:452−460. doi: 10.1016/j.fuel.2018.11.041
    [11] Meng H Y, Wang S Z, Chen L, et al. Investigation on synergistic effects and char morphology during co-pyrolysis of poly(vinyl chloride) blended with different rank coals from northern China[J]. Energy and Fuels,2015,29(10):6645−6655. doi: 10.1021/acs.energyfuels.5b01437
    [12] Song Y H, Yin N, Yao D, et al. Co-pyrolysis characteristics and synergistic mechanism of low-rank coal and direct liquefaction residue[J]. Energy Sources, Part A:Recovery, Utilization and Environmental Effects,2019,41(21):2675−2689. doi: 10.1080/15567036.2019.1568639
    [13] Song Y H, Lei S M, Li J C, et al. In situ FTIR analysis of coke formation mechanism during co-pyrolysis of low-rank coal and direct coal liquefaction residue[J]. Renewable Energy,2021,179:2048−2062. doi: 10.1016/j.renene.2021.08.030
    [14] Wu Z Q, Yang W C, Li Y W, et al. Co-pyrolysis behavior of microalgae biomass and low-quality coal: Products distributions, char-surface morphology, and synergistic effects[J]. Bioresource Technology,2018,255:238−245. doi: 10.1016/j.biortech.2018.01.141
    [15] 何清, 程晨, 龚岩, 等. 水热炭化生物质与煤共热解和共气化特性研究[J]. 燃料化学学报,2022,50(6):665−673.

    He Q, Cheng C, Gong Y, et al. Study on co-pyrolysis and co-gasification of hydrothermal carbonized biomass and coal[J]. Journal of Fuel Chemistry and Technology,2022,50(6):665−673.
    [16] 张婷婷, 白宗庆, 侯冉冉, 等. 煤与废塑料共热解特性研究进展[J]. 化工进展,2021,40(5):2461−2470.

    Zhang T T, Bai Z Q, Hou R R, et al. Research progress on co-pyrolysis characteristics of coal and waste plastics[J]. Chemical Industry and Engineering Progress,2021,40(5):2461−2470.
    [17] Lu Y, Wang Y, Zhang J, et al. Investigation on the characteristics of pyrolysates during co-pyrolysis of Zhundong coal and Changji oil shale and its kinetics[J]. Energy,2020,200:117529. doi: 10.1016/j.energy.2020.117529
    [18] Guo F Q, Li X L, Wang Y, et al. Characterization of Zhundong lignite and biomass co-pyrolysis in a thermogravimetric analyzer and a fixed bed reactor[J]. Energy,2017,141:2154−2163. doi: 10.1016/j.energy.2017.11.141
    [19] Li S D, Chen X L, Liu A, et al. Co-pyrolysis characteristic of biomass and bituminous coal[J]. Bioresource Technology,2015,179:414−420. doi: 10.1016/j.biortech.2014.12.025
    [20] 孙云娟. 生物质与煤共热解气化行为特性及动力学研究[D]. 中国林业科学研究院. 北京, 2013.

    Sun Y J. Study on the charicteristic and kinetic of biomass and coal co-pyrolysis[D]. Chinese Academy of Forestry. Beijing, 2013.
    [21] Gyul’maliev A M, Golovin G S, Gagarin S G. Classification of fossil fuels according to structural-chemical characteristics[J]. Solid Fuel Chemistry,2007,41(5):257−266. doi: 10.3103/S0361521907050011
    [22] 孙志强. 基于煤化学结构指数法对新疆煤液化性能评价与西沟煤/渣油共液化强化研究[D]. 新疆大学. 乌鲁木齐, 2017.

    Sun Z Q. Evaluation of Xinjiang low rank coal direct liquefaction based on coal chemistry structural index and improvement of the performance for co-liquefaction of Xigou coal and residue[D]. Xinjiang University. Urumqi, 2017.
    [23] 煤炭科学技术研究院有限公司. 煤油共炼原料技术条件[S]. 中国, 2018.

    Coal Science and Technology Research Institute Co. , Ltd. Technical conditions for coal oil co refining raw materials[S]. China, 2018.
    [24] Li S S, Ma X Q, Liu G C, et al. A TG-FTIR investigation to the co-pyrolysis of oil shale with coal[J]. Journal of Analytical and Applied Pyrolysis,2016,120:540−548. doi: 10.1016/j.jaap.2016.07.009
    [25] 陈海翔, 刘乃安. 温度积分近似式研究[J]. 化学进展,2008,20(7-8):1015−1020.

    Chen H X, Liu N A. Approximation Expressions for the Temperature Integral[J]. Progress in Chemistry,2008,20(7-8):1015−1020.
    [26] Ma Y Y, Ma F Y, Mo W L, et al. Five-stage sequential extraction of Hefeng coal and direct liquefaction performance of the extraction residue[J]. Fuel,2020,266(16):117039.
    [27] Hou R R, Pang K L, Bai Z Q, et al. Study on carboxyl groups in direct liquefaction of lignite: conjoint analysis of theoretical calculations and experimental methods[J]. Fuel,2021,286:119298. doi: 10.1016/j.fuel.2020.119298
    [28] Liu Q, Wang S R, Zheng Y, et al. Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis[J]. Journal of Analytical and Applied Pyrolysis,2008,82(1):170−177. doi: 10.1016/j.jaap.2008.03.007
    [29] Lin X C, Wang C H, Ideta K, et al. Insights into the functional group transformation of a chinese brown coal during slow pyrolysis by combining various experiments[J]. Fuel,2014,118:257−264. doi: 10.1016/j.fuel.2013.10.081
    [30] 陈泽洲. 煤加氢液化催化剂及相关条件下烃组分的反应研究[D]. 北京化工大学. 北京, 2018.

    Chen Z Z. Study on the reactions of catalysts and hydrocarbons in coal hydroliquefaction[D]. Beijing University of Chemical Technology. Beijing, 2018.
    [31] 何小强, 莫文龙, 王强, 等. 离子液体溶胀对煤直接液化残渣结构及热解性能的影响[J]. 燃料化学学报,2019,47(12):1417−1428.

    He X Q, Mo W L, Wang Q, et al. Effect of swelling treatment by ionic liquid on the structure andpyrolysis performance of the direct coal liquefaction residue[J]. Journal of Fuel Chemistry and Technology,2019,47(12):1417−1428.
    [32] 鲁阳. 准东煤与昌吉油页岩混合燃料热解/燃烧特性及其动力学研究[D]. 太原理工大学. 太原, 2020.

    Lu Y. Research on pyrolysis and combustion characteristics of Zhundong coal and Changji oil shale mixtures and their kinetics[D]. Taiyuan University of Technology. Taiyuan, 2020.
    [33] Wang Y G, Zhou J L, Bai L, et al. Impacts of inherent O-containing functional groups on the surface properties of shengli lignite[J]. Energy and Fuels,2014,28(2):862−867. doi: 10.1021/ef402004j
    [34] Giroux L, Charland J P, MacPhee J A. Application of thermogravimetric fourier transform infrared spectroscopy (TG-FTIR) to the analysis of oxygen functional groups in coal[J]. Energy and Fuels,2006,20(5):1988−1996. doi: 10.1021/ef0600917
    [35] Scaccia S. TG-FTIR and kinetics of devolatilization of Sulcis coal[J]. Journal of Analytical and Applied Pyrolysis,2013,104:95−102. doi: 10.1016/j.jaap.2013.09.002
    [36] Feng X B, Cao J P, Zhao X Y, et al. Organic oxygen transformation during pyrolysis of Baiyinhua lignite[J]. Journal of Analytical and Applied Pyrolysis,2016,117:106−115. doi: 10.1016/j.jaap.2015.12.010
    [37] 杨伏生. 基于TG-MS方法的核桃壳/神府煤的凹凸棒土催化共热解动力学及机理研究[D]. 西安科技大学. 西安, 2019.

    Yang F S. Kinetics and mechanism of copyrolysis of walnut shell and Shenfu coal using attapulgite as catalyst based on TG-MS method[D]. Xi’an University of Science and Technology. Xi’an, 2019.
    [38] Chen X, Liu L, Zhang L, et al. Thermogravimetric analysis and kinetics of the co-pyrolysis of coal blends with corn stalks[J]. Thermochimica Acta,2018,659:59−65. doi: 10.1016/j.tca.2017.11.005
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  8
  • HTML全文浏览量:  5
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-25
  • 修回日期:  2023-09-30
  • 录用日期:  2023-10-04
  • 网络出版日期:  2023-11-10

目录

    /

    返回文章
    返回