留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Enhanced photocatalysis using metal-organic framework MIL-101(Fe) for crude oil degradation in oil-polluted water

LIANG Yuning WANG Baohui LI Shuohui CHI Weimeng BI Mingchun LIU Yuxuan WANG Yiran YAO Ming ZHANG Tianying CHEN Ying

梁宇宁, 王宝辉, 李硕辉, 迟伟蒙, 毕明春, 刘雨萱, 王一然, 姚明, 张天赢, 陈颖. 金属有机框架MIL-101(Fe)用于增强光催化降解含油污水中的原油[J]. 燃料化学学报(中英文), 2024, 52(4): 607-618. doi: 10.1016/S1872-5813(23)60396-2
引用本文: 梁宇宁, 王宝辉, 李硕辉, 迟伟蒙, 毕明春, 刘雨萱, 王一然, 姚明, 张天赢, 陈颖. 金属有机框架MIL-101(Fe)用于增强光催化降解含油污水中的原油[J]. 燃料化学学报(中英文), 2024, 52(4): 607-618. doi: 10.1016/S1872-5813(23)60396-2
LIANG Yuning, WANG Baohui, LI Shuohui, CHI Weimeng, BI Mingchun, LIU Yuxuan, WANG Yiran, YAO Ming, ZHANG Tianying, CHEN Ying. Enhanced photocatalysis using metal-organic framework MIL-101(Fe) for crude oil degradation in oil-polluted water[J]. Journal of Fuel Chemistry and Technology, 2024, 52(4): 607-618. doi: 10.1016/S1872-5813(23)60396-2
Citation: LIANG Yuning, WANG Baohui, LI Shuohui, CHI Weimeng, BI Mingchun, LIU Yuxuan, WANG Yiran, YAO Ming, ZHANG Tianying, CHEN Ying. Enhanced photocatalysis using metal-organic framework MIL-101(Fe) for crude oil degradation in oil-polluted water[J]. Journal of Fuel Chemistry and Technology, 2024, 52(4): 607-618. doi: 10.1016/S1872-5813(23)60396-2

金属有机框架MIL-101(Fe)用于增强光催化降解含油污水中的原油

doi: 10.1016/S1872-5813(23)60396-2
详细信息
  • 中图分类号: X74

Enhanced photocatalysis using metal-organic framework MIL-101(Fe) for crude oil degradation in oil-polluted water

More Information
  • 摘要: 利用溶剂热法合成了一种稳定的金属有机框架(MOF)MIL-101(Fe),并作为一种新型光催化剂提高了油田废水中原油的降解性能。通过对反应条件的优化,确定了以下最佳参数:暗反应时间为30 min,光反应时间为30 min,pH值为5.5,催化剂量为150 mg/L,反应温度为303.15 K。在这些反应条件下,去除率达到了94.73%。本研究是铁基MOFs在油田废水光催化降解中的应用。MIL-101(Fe)在温和的酸性条件下表现出良好的稳定性,并且可以有效地循环利用。这些发现为利用MIL-101(Fe)作为一种很有前途的工业应用材料,通过光催化降解从受油污染的水中去除原油提供了有价值的见解。
  • FIG. 3084.  FIG. 3084.

    FIG. 3084.  FIG. 3084.

    Figure  1  XRD spectrum of MIL-101(Fe)

    Figure  2  (a)−(c) SEM images of MIL-101(Fe), (d) TEM image of MIL-101(Fe)

    Figure  3  FT-IR spectrum of MIL-101(Fe)

    Figure  4  (a) Plot of (αhv)2 versus energy (hv) and (b) UV-vis DRS of MIL-101(Fe)

    Figure  5  N2 adsorption-desorption isotherms of MIL-101(Fe)

    Figure  6  XPS spectra of MIL-101(Fe)

    Figure  7  Wettability of MIL-101(Fe)

    Figure  8  Degradation of crude oil using MIL-101(Fe) under different conditions (catalyst+light, only catalyst, and only light)

    Figure  9  Photocatalytic degradation of crude oil using MIL-101(Fe) in the initial state

    Figure  10  Removal rate of crude oil in the MOF-photo-Fenton system under different conditions ((a) effect of reaction time, (b) and (c) effect of pH, (d) effect of catalyst dosage, (e) effect of temperature)

    Figure  11  Experimental kinetic analysis of photocatalytic degradation of crude oil using MIL-101(Fe) under optimum conditions

    Figure  12  (a) Recyclability and stability of MIL-101(Fe), (b) XRD of MIL-101(Fe) before and after reaction, (c) SEM of MIL-101(Fe) after reaction

    Figure  13  Capture experiments to investigate the generation of active species behind MIL-101(Fe) in the photocatalytic degradation of crude oil

    Figure  14  (a) EIS spectra of MIL-101(Fe), (b) Plots of Intensity versus Binding Energy using MIL-101(Fe)

    Figure  15  Proposed mechanistic pathway under visible light irradiation

    Table  1  Summary of research on photocatalytic degradation of oily wastewater by various catalysts

    PhotocatalystActivator
    amount/g
    PollutantConcentrationDose of
    pollutant/mL
    Source of
    irradiation
    Time/
    min
    Maximum
    degradation/
    adsorption
    Ref.
    MIL-101(Fe)0.015OPW5.0×10−460UV3094.73this paper
    TiO2-SiO20.16OPW1.0×10−4 400UV3095[19]
    Ce/Bi2O310.51OPW5.0×10−52000Visible3090[20]
    Fe- TiO20.10OPW2.05×10−4100UV6098.1[21]
    Go/ZnIn2S40.10OPW1.0×10−4
    (COD)
    100Visible6072[22]
    MoS2/ZIS0.10OPW1.2×10−4100Visible8092[23]
    TiO2
    (Aerogel)
    0.16OPW1.0×10−4400UV9091[24]
    MoS2/P-C3N40.10OPW1.6×10−4
    (COD)
    100Visible10094[25]
    γ-Fe2O31toluene5.0×10−2100Visible12090[26]
    γ-Fe2O31toluene1.0×10−1100Visible12086[26]
    γ-Fe2O31toluene1.5×10−1100Visible12078[26]
    Ag@ZnO/
    Zn2Ti3O8
    0.10OPW1.5×10−4100UV30089[27]
    AgTiZn
    (MW)
    0.10OPW1.5×10−4100UV30090.15[28]
    CuTiZn0.10OPW1.5×10−4100UV30087.02[28]
    AgMgZn
    (MW)
    0.10OPW1.5×10−4100UV30093.35[28]
    AgMnZn
    (MW)
    0.10OPW1.5×10−4100UV30088.95[28]
    Pt/TiO20.30POME (COD)4.0×10−2−1.0×10−1300UV& Visible48090[29]
    Ag/TiO20.30POME (COD)4.0×10−2−1.0×10−1300UV& Visible48090[30]
    PVDF/TiO215 cm2 membraneOIL1.0×10−3100UV48060+[31]
    g-C3N4-2AC0.025OPW1.0×10−350Visible48097.2[32]
    GCN0.20OPW1.0×10−3200UV54096.6[33]
    GCN0.20OPW1.0×10−3200Visible54085.4[33]
    EG-ZnO0.10OPW1.0×10−3100UV432035[34]
    N/TiO2/rGO0.025OPW5.0×10−1200UV4032054.80[35]
    下载: 导出CSV
  • [1] HASSANI S S, DARAEE M, SOBAT Z. Advanced development in upstream of petroleum industry using nanotechnology[J]. Chin J Chem Eng,2020,28(6):1483−1491. doi: 10.1016/j.cjche.2020.02.030
    [2] SHEN Y, LI D W, WANG L L, et al. Superelastic polyimide nanofiber-based aerogels modified with silicone nano filaments for ultrafast oil/water separation[J]. ACS Appl Mater Interfaces,2021,13(17):20489−20500. doi: 10.1021/acsami.1c01136
    [3] LIU B C, LI H S, LIU N, et al. Experimental study on filtration effect of oilfield sewage based on new polyurethane modified materials[J]. Water Sci Technol,2020,82(10):2039−2050. doi: 10.2166/wst.2020.462
    [4] ZHU X L, RAN Y L, GUO W J, et al. Optimization of reinjection treatment technology for oilfield wastewater in Longdong area[J]. E3S Web of Conferences,2020,194:04046. doi: 10.1051/e3sconf/202019404046
    [5] HOFFMANN M R, MARTIN S T, CHOI W. Environmental applications of semiconductor photocatalysis[J]. Chem Rev,1995,95(1):69−96. doi: 10.1021/cr00033a004
    [6] SINGH M, PAKSHIRAJAN K, TRIVEDI V. A study on combined effect of methylene blue and sodium anthraquinone-2-sulphonate on inactivation efficiency of escherichia coli and enterococcus hirae[J]. Appl Catal B: Environ,2019,88(3):283−291.
    [7] SIEDL N, BAUMANN S O, ELSER M J, et al. Particle networks from powder mixtures: generation of Tio2-Sno2 heterojunctions via surface charge-induced heteroaggregation[J]. J Phys Chem C,2019,116(43):22967−22973.
    [8] MA S L, ZHAN S H, XIA Y G, et al. Enhanced photocatalytic bactericidal performance and mechanism with novel Ag/ZnO/g-C3N4 composite under visible light[J]. Catal Today,2019,330:179−188. doi: 10.1016/j.cattod.2018.04.014
    [9] ZHU T T, Ye X J, ZHANG Q Q, et al. Efficient utilisation of photogenerated electrons and holes for photocatalytic redox reactions using visible light-driven Au/ZnIn2S4 hybrid[J]. J Hazard Mater,2019,367:277−285. doi: 10.1016/j.jhazmat.2018.12.093
    [10] XIA Q, WANG H, HUANG B B, et al. State‐of‐the‐art advances and challenges of iron-based metal organic frameworks from attractive features, synthesis to multifunctional applications[J]. Small,2019,15(2):1803088. doi: 10.1002/smll.201803088
    [11] RUI K, ZHAO G, CHEN Y, et al. Hybrid 2D dual-metal-organic frameworks for enhanced water oxidation catalysis[J]. Adv Funct Mater,2018,28(26):1801554. doi: 10.1002/adfm.201801554
    [12] ZHAO F, LIU Y, HAMMOUDA S B, et al. MIL-101(Fe)/g-C3N4 for enhanced visible-light-driven photocatalysis toward simultaneous reduction of Cr(VI) and oxidation of bisphenol A in aqueous media[J]. Appl Catal B: Environ,2020,272:119033. doi: 10.1016/j.apcatb.2020.119033
    [13] HAN H, ZHANG H X, CHEN Y, et al. Enhanced photocatalysis degradation of organophosphorus flame retardant using MIL-101(Fe)/persulfate: effect of irradiation wavelength and real water matrixes[J]. Chem Eng J,2019,368:273−284. doi: 10.1016/j.cej.2019.02.190
    [14] ZHANG Y, XIONG M Y, SUN A R, et al. MIL-101(Fe) nanodot-induced improvement of adsorption and photocatalytic activity of carbon fiber/TiO2-based weavable photocatalyst for removing pharmaceutical pollutants[J]. J Clean Prod,2021,290:125782. doi: 10.1016/j.jclepro.2021.125782
    [15] MILLANGE F, GUILLOU N, MEDINA M E. Selective sorption of organic molecules by the flexible porous hybrid metal-organic framework MIL-53(Fe) controlled by various host-guest interactions[J]. J Mater Chem A , 2010, 22, 14: 4237–4245.
    [16] KIM P J, YOU Y W, PARK H, et al. Separation of SF6 from SF6/N2 mixture using metal–organic framework MIL-100(Fe) granule[J]. Chem Eng J,2015,262:683−690. doi: 10.1016/j.cej.2014.09.123
    [17] KIM B C, HONG W G, LEE S M, et al. Enhancement of hydrogen storage capacity in polyaniline-vanadium pentoxide nanocomposites[J]. Int J Hydrogen Energ,2010,35:1300−1304.
    [18] AI L H, ZHANG C H, LI L L, et al. Iron terephthalate metal–organic framework: Revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation[J]. Appl Catal B: Environ, 2014, 148–149: 191−200.
    [19] LI X W, ZHAO H L, LU P P, et al. Photocatalytic activity of monolithic TiO2-SiO2 composite aerogels obtained by ambient drying for degrading oily wastewater[J]. J Univ Sci Technol Beijing,2013,35(5):651−658.
    [20] ZHOU G H. Degradation of oily wastewater by coated photocatalyst with visible light response[D]. Dalian: Dalian Maritime University, 2014.
    [21] GAO Y H, CHEN Y, WANG Z X, et al. Treatment of oily wastewater by photocatalytic degradation using nano Fe-TiO2[J]. Adv Mater Res,2013,781−784(2606):2241−2244.
    [22] ZHANG Y, ZHAO L. Ozone-assisted photocatalytic degradation of oil-polluted water on graphene/ZnIn2S4 composites[J]. Chem Res Appl,2022,34(8):1719−1726.
    [23] XIA D G, DU Y L. Preparation of MoS2/ZnIn2S4 and photocatalytic degradation of oily wastewater[J]. Ind Water Wastewater,2022,53(5):51−56.
    [24] LI X W, LÜ P P, YAO K F, et al. Preparation of monolithic TiO2 aerogel via ambient drying and photocatalytic degradation of oily wastewater[J]. J Inorg Mater,2012,27(11):1153−1158.
    [25] RUAN Y. Study on the performance of P-C3N4 coated with MoS2 for the degradation of oily wastewater[J]. Energy Chem Ind,2022,43(5):64−68.
    [26] ROUSHERNAS P, YUSOP Z, MAJIDNIA Z. Photocatalytic degradation of spilled oil in sea water using maghemite nanoparticles[J]. Desalin Water Treat,2016,57(13):5837−5841. doi: 10.1080/19443994.2015.1005149
    [27] CHU Y H, WU X, LU D Q, et al. Preparation of nano-Ag@ZnO/Zn2Ti3O8 and its application in photocatalytic degradation of oilfield wastewater[J]. Contemp Chem Ind,2022,51(2):350−353.
    [28] SUN B. Study on microwave synthesis, characterisation and properties of nanocomposites[D]. Fushun: Liaoning Petrochemical University, 2020.
    [29] CHENG C K, DERAHMAN M R, KHAN M R. Evaluation of the photocatalytic degradation of pre-treated palm oil mill effluent (POME) over Pt-loaded titania[J]. J Environ Chem Eng,2015,1(3):261−270.
    [30] CHENG C K, DERAHMAN M R, NG K H, et al. Preparation of titania doped argentum photocatalyst and its photoactivity towards palm oil mill effluent degradation[J]. J Clean Prod,2016,112(1):1128−1135.
    [31] RUSLI U N, ALIAS N H, SHAHRUDDIN M Z, et al. Photocatalytic Degradation of Oil using Polyvinylidene Fluoride/Titanium Dioxide Composite Membrane for Oily Wastewater Treatment. Munich: MATEC Web of Conferences, 2016, 69: 05003.
    [32] RAN L T. Study on modification of g-C3N4 photocatalyst and its degradation of oily wastewater[D]. Xi'an: Xi'an Shiyou University, 2022.
    [33] ALIAS N H, JAAFAR J, SAMITSU S, et al. Photocatalytic degradation of oilfield produced water using graphitic carbon nitride embedded in electrospun polyacrylonitrile nanofibers[J]. Chemosphere,2018,204(AUG.):79−86.
    [34] WANG W Y, WANG L Q, ZHANG R J. Preparation of expanded graphite-ZnO composite and its photocatalytic degradation of crude oil[J]. Environ Prot Chem Ind,2007,27(4):367−370.
    [35] LI Y H, ZHANG Q Q, JIANG J X, et al. Long-acting photocatalytic degradation of crude oil in seawater via combination of TiO2 and N-doped TiO2/ reduced graphene oxide[J]. Environ Technol,2021,42(5/8):860−870.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  133
  • HTML全文浏览量:  12
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-04
  • 修回日期:  2023-10-12
  • 录用日期:  2023-10-18
  • 网络出版日期:  2023-11-10
  • 刊出日期:  2024-04-03

目录

    /

    返回文章
    返回