留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

乙烯渣油沥青组分的成焦性研究

张桐桐 朱慧慧 朱亚明 胡朝帅 吕君 程俊霞 白永辉 赵雪飞

张桐桐, 朱慧慧, 朱亚明, 胡朝帅, 吕君, 程俊霞, 白永辉, 赵雪飞. 乙烯渣油沥青组分的成焦性研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60435-4
引用本文: 张桐桐, 朱慧慧, 朱亚明, 胡朝帅, 吕君, 程俊霞, 白永辉, 赵雪飞. 乙烯渣油沥青组分的成焦性研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60435-4
ZHANG Tongtong, ZHU Huihui, ZHU Yaming, HU Chaoshuai, LV Jun, CHENG Junxia, BAI Yonghui, ZHAO Xuefei. Research on coking performance of ethylene residue pitch components[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60435-4
Citation: ZHANG Tongtong, ZHU Huihui, ZHU Yaming, HU Chaoshuai, LV Jun, CHENG Junxia, BAI Yonghui, ZHAO Xuefei. Research on coking performance of ethylene residue pitch components[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60435-4

乙烯渣油沥青组分的成焦性研究

doi: 10.1016/S1872-5813(24)60435-4
基金项目: 国家自然科学基金(22208138),辽宁省先进煤焦化技术重点实验室开发课题(2023KFKT-01, 2022KFKT10),省部共建煤炭高效利用与绿色化工国家重点实验室开放课题(2022-K41)资助
详细信息
    通讯作者:

    Tel:18341270860, E-mail: zhuyaming0504@163.com

    hexiaojiutian123@163.com

    zhao_xuefei@sohu.com

  • 中图分类号: TK6

Research on coking performance of ethylene residue pitch components

Funds: The project was supported by National Natural Science Foundation of China (22208138), Foundation of Key Laboratory for Advanced Coal and Coking Technology of Liaoning Province (2023KFKT-01, 2022KFKT10), and Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (2022-K41).
  • 摘要: 乙烯渣油沥青作为乙烯渣油中的重质组分具有含碳量高、芳香度较高及杂原子(S、N)含量低的特点,被广泛用作制备石油基人造炭材料的优选原料。为充分研究乙烯渣油沥青的成焦性,本研究选取四种溶剂(甲醇、正丁醇、正庚烷、二甲基亚砜)对乙烯渣油沥青进行萃取分离,获得八种乙烯渣油沥青组分(四种可溶组分和四种不溶组分),并对获得的乙烯渣油沥青组分进行热转化和炭化处理(热转化温度和炭化温度分别为500和1400 ℃)获得系列乙烯渣油沥青焦。采用红外光谱、热重分析仪、1H-NMR对乙烯渣油沥青组分的基础物性进行研究;利用偏光显微镜、X射线单晶衍射仪、拉曼光谱仪、扫描电子显微镜等对系列石油系沥青焦结构进行研究。结果表明,乙烯渣油沥青不溶组分芳香性略高于可溶组分,且不溶组分支链略少于可溶组分;不溶组分热转化和炭化后得到的乙烯渣油沥青焦显微强度高于可溶组分获得的乙烯渣油沥青焦,且乙烯渣油沥青沥青焦HS-C的真密度高达2.0554 g/cm3
  • 图  1  乙烯渣油沥青组分的萃取流程示意图

    Figure  1  Extraction process of Ethylene Residue pitch Components

    图  2  乙烯渣油沥青组分的热转化及炭化流程示意图

    Figure  2  Thermal conversion and calcination process of ethylene residue pitch components

    图  3  样品的红外光谱谱图

    Figure  3  FT-IR spectra of samples

    (a): soluble; (b): insoluble.

    图  4  DMOS在3100−2770 cm−1的分峰拟合谱(a),可溶组分(b)和不溶组分(c)的CH3/CH2Iar指数

    Figure  4  Curve-fitting spectrum in the zone of 3100−2770 cm−1 for soluble pitch (a), the distributions of Iar and CH3/CH2 of solubles(b) and insolubles (c)

    图  5  ETP的1H-NMR谱图(a)和组分的芳香缩合度分布(b)

    Figure  5  1H-NMR spectra of ETP (a) and aromatic condensation degree distribution of components (b)

    图  6  组分的热分析曲线

    Figure  6  The pyrolysis curves of components

    图  7  沥青组分的热转化产物

    Figure  7  Thermal conversion products

    图  8  沥青焦偏光图像

    Figure  8  Polarizing image of pitch cokes

    (a): ETP-C; (b): DMSOS-C; (c): HS-C; (d): BAS-C; (e): MTI-C; (f): BAI-C; (g): HI-C; (h): DMSOI-C.

    图  9  焦炭的X射线衍射图

    Figure  9  X-ray diffraction pattern of cokes

    (a): soluble component cokes; (b): insoluble component cokes; (c): curve-fitted graph of ETP-C.

    图  10  焦炭的拉曼光谱谱图

    Figure  10  Raman spectrogram of cokes

    (a): soluble component cokes; (b): insoluble component cokes; (c): curve-fitted graph of DMSOS-C.

    图  11  焦炭拉曼拟合结果

    Figure  11  Coke Raman fitting results

    (a): insoluble component cokes; (b): soluble component cokes.

    图  12  可溶组分沥青焦SEM图像

    Figure  12  SEM of soluble component pitch cokes

    (a): ETP-C; (b): DMSOS-C; (c): HS-C; (d): BAS-C; (e): MTI-C; (f): BAI-C; (g): HI-C; (h): DMSOI-C.

    表  1  ETP的工业分析

    Table  1  Proximate analysis of ETP

    Sample Content w/% SP/℃
    QI TI CV V
    ETP 0.41 0.59 32.64 76.93 126
    下载: 导出CSV

    表  2  沥青组分的工业分析

    Table  2  Proximate analysis of pitch components

    Sample Yield/% Content w/% SP/℃
    QI TI CV V
    ETP 100 0.41 0.59 32.64 76.93 126
    MTI 96.68 0.01 0.05 37.13 77.30 168
    BAI 73.46 0.10 0.15 37.51 70.86 178
    HI 68.31 1.03 9.93 43.76 66.59 178
    DMSOI 34.57 0.37 0.60 37.41 75.13 124
    MTS 3.32 4.97 97.57
    BAS 26.54 11.88 94.46
    HS 31.69 12.93 93.20
    DMSOS 65.43 28.46 83.24 51
    下载: 导出CSV

    表  3  沥青组分的元素分析

    Table  3  Ultimate analysis of pitch components

    Sample Content w/% C/H
    C H N S O
    ETP 91.00 6.42 0.06 0.00 2.52 1.18
    MTI 93.37 6.59 0.04 0.00 0.00 1.18
    BAI 93.52 6.43 0.05 0.00 0.00 1.21
    HI 89.21 6.07 0.06 0.00 4.66 1.22
    DMSOI 90.30 6.28 0.06 1.33 2.03 1.20
    DMSOS 91.19 6.35 0.08 0.16 2.23 1.20
    HS 92.77 7.15 0.08 0.00 0.00 1.08
    BAS 91.67 6.82 0.10 0.00 1.42 1.12
    MTS 89.33 6.26 0.36 0.00 4.04 1.19
    下载: 导出CSV

    表  4  偏光显微镜下各光学组织的测定标准

    Table  4  Standard for the determination of various optical structures under polarizing microscope

    Optical organization Size/μm
    length width
    Mf ≤1 <1
    Mm 1−5 1−5
    Mc 5−10 5−10
    Ff >30 <10
    Fc >30 >10
    Le ≥10 ≥10
    下载: 导出CSV

    表  5  组分的氢原子分布

    Table  5  Distribution of hydrogen atoms in components

    Sample Hydrogen ratio
    Har HF Hα HN Hβ Hγ
    DMSOI 0.283 0.200 0.319 0.060 0.098 0.039
    HI 0.257 0.296 0.248 0.055 0.087 0.057
    BAI 0.392 0.158 0.317 0.064 0.045 0.023
    MTI 0.274 0.231 0.284 0.061 0.091 0.059
    ETP 0.158 0.263 0.481 0.043 0.029 0.026
    DMSOS 0.237 0.286 0.272 0.064 0.076 0.064
    HS 0.338 0.261 0.301 0.045 0.041 0.013
    BAS 0.353 0.215 0.280 0.068 0.062 0.021
    MTS 0.336 0.200 0.330 0.061 0.043 0.030
    下载: 导出CSV

    表  6  系列生焦收率

    Table  6  Yield of green cokes

    Sample Yield/%
    ETP-G 52.75
    DMSOS-G 43.66
    BAS-G 33.45
    HS-G 34.16
    DMSOI-G 53.17
    MTI-G 53.50
    BAI-G 52.88
    HI-G 54.18
    下载: 导出CSV

    表  7  各组分沥青焦偏光

    Table  7  Polarizing results of each pitch cokes

    Sample Mf/% Mm/% Mc/% Ff/% Fc/% Le/% F+L/%
    ETP-C 2.00 7.86 5.34 7.81 13.39 63.60 84.80
    MTI-C 0.45 11.86 7.21 7.56 13.96 58.95 80.47
    BAI-C 0.96 9.52 5.96 0.98 1.46 81.12 83.56
    HI-C 2.00 15.50 8.00 4.50 10.00 60.00 74.50
    DMSOI-C 0.65 7.35 2.00 2.00 13.00 75.00 90.00
    DMSOS-C 0.56 6.81 1.13 11.50 4.50 75.50 91.50
    HS-C 1.62 4.86 2.83 10.93 13.36 66.40 90.69
    BAS-C 1.50 7.49 4.56 6.25 10.70 69.50 86.45
    下载: 导出CSV

    表  8  焦炭002峰拟合数据及计算

    Table  8  Cokes 002 peak fitting data and calculation results

    Sample 2θc/(°) βc d002/nm Lc/nm N n
    ETP-C 25.563 0.047 0.348 2.972 10 29
    DMSOS-C 25.581 0.041 0.348 3.389 11 37
    HS-C 25.662 0.041 0.348 3.199 10 33
    BAS-C 25.630 0.044 0.347 3.411 11 37
    MTI-C 25.609 0.044 0.348 3.167 10 33
    BAI-C 25.607 0.044 0.347 3.218 10 34
    HI-C 25.656 0.044 0.347 3.200 10 33
    DMSOI-C 25.638 0.041 0.347 3.399 11 37
    下载: 导出CSV

    表  9  系列沥青焦的拉曼特征参数

    Table  9  Characteristic Raman index of series pitch coke

    Sample Area/105
    ID1 ID2 ID3 ID4 IG

    1.937 0.583 0.533 0.770 0.407
    MTI-C 1.017 0.275 0.248 0.226 0.308
    BAI-C 2.011 0.411 0.445 0.456 0.782
    HI-C 1.274 0.263 0.358 0.280 0.527
    DMSOI-C 1.661 0.313 0.363 0.375 0.517
    DMSOS-C 1.739 0.315 0.309 0.347 0.620
    HS-C 2.101 0.282 0.359 0.488 0.918
    BAS-C 1.201 0.166 0.256 0.306 0.578
    下载: 导出CSV

    表  10  系列沥青焦炭宏观性能指标

    Table  10  Index of macroscopic properties of series pitch coke

    Sample TD/(g·cm−3) PR/(mΩ·mm) MS/%
    ETP-C 2.0145 484 66.0
    DMSOS-C 1.8393 440 59.5
    HS-C 2.0554 449 68.5
    BAS-C 1.9744 467 71.5
    MTI-C 2.0434 455 67.5
    BAI-C 2.0100 475 75.0
    HI-C 1.8402 450 70.5
    DMSOI-C 2.0172 434 78.0
    下载: 导出CSV
  • [1] HU H, WU M B. Heavy oil-derived carbon for energy storage applications[J]. J Mater Chem A,2020,8(15):7066−7082. doi: 10.1039/D0TA00095G
    [2] KONG D Q, CAI T H, FAN H D, et al. Polycyclic aromatic hydrocarbons as a new class of promising cathode materials for aluminum-ion batteries[J]. Angew Chem Int Ed,2022,61:e202114681. doi: 10.1002/anie.202114681
    [3] LIU Y H, LIU X P, MA Z K, et al. A new preparation method of graphite cones from polycyclic aromatic hydrocarbons/polyimide composite carbon fibers[J]. Carbon,2022,196:128−135. doi: 10.1016/j.carbon.2022.04.069
    [4] JIANG B, QI C L, YANG H, et al. Recent advances of carbon-based electromagnetic wave absorption materials facing the actual situations[J]. Carbon,2023,208:390−409. doi: 10.1016/j.carbon.2023.04.002
    [5] WU C H, XU Q, NING H, et al. Petroleum pitch derived carbon as both cathode and anode materials for advanced potassium-ion hybrid capacitors[J]. Carbon,2022,196:727−735. doi: 10.1016/j.carbon.2022.05.021
    [6] YANG W, WANG C N, JIANG B, et al. Lightweight 3D interconnected porous carbon with robust cavity skeleton derived from petroleum pitch for effective multi-band electromagnetic wave absorption[J]. Carbon,2022,200:390−400. doi: 10.1016/j.carbon.2022.08.069
    [7] YANG W, ZHANG C X, LI Y F. Crumpled nitrogen-doped porous carbon nanosheets derived from petroleum pitch for high-performance and flexible electromagnetic wave absorption[J]. Ind Eng Chem Res,2022,61:2799−2808. doi: 10.1021/acs.iecr.1c04481
    [8] WU W, ZHANG X X, YANG J X, et al. Facile preparation of oxygen-rich activated carbon from petroleum coke for enhancing methylene blue adsorption[J]. Carbon Lett,2020,(30):627−636.
    [9] CHAI L N, LOU B, LI J, et al. Insight into the reactivity of aromatic-rich fractions co-carbonized with polyethylene glycol for preparation of isotropic pitch with superior spinnability[J]. Fuel Process Technol,2022,237:107433. doi: 10.1016/j.fuproc.2022.107433
    [10] YANG J X, SHI K, LI X K, et al. Preparation of isotropic spinnable pitch and carbon fiber from biomass tar through the co-carbonization with ethylene bottom oil[J]. Carbon Lett,2018,25:89−94.
    [11] SHI K, YANG J X, LI J, et al. Effect of oxygen-introduced pitch precursor on the properties and structure evolution of isotropic pitch-based fibers during carbonization and graphitization[J]. Fuel Process Technol,2020,199:106291. doi: 10.1016/j.fuproc.2019.106291
    [12] GONG X, GUO S H, DING Y Y, et al. Preparation of mesocarbon microbeads as anode material for lithium-ion battery by co-carbonization of FCC decant oil and conductive carbon black[J]. Fuel Process Technol,2022,227:107110. doi: 10.1016/j.fuproc.2021.107110
    [13] GONG X, LOU B, YU R, et al. Carbonization of mesocarbon microbeads prepared from mesophase pitch with different anisotropic contents and their application in lithium-ion batteries[J]. Fuel Process Technol,2021,217:106832. doi: 10.1016/j.fuproc.2021.106832
    [14] WANG F, JIAO S H, LIU W C, et al. Preparation of mesophase carbon microbeads from fluidized catalytic cracking residue oil: The effect of active structures on their coalescence[J]. J Anal Appl Pyrolysis,2021,156:105166. doi: 10.1016/j.jaap.2021.105166
    [15] LOU B, LIU D, QIU Y, et al. Modified effect on properties of mesophase pitch prepared from various two-stage thermotreatments of FCC decant oil[J]. Fuel,2021,284:119034. doi: 10.1016/j.fuel.2020.119034
    [16] LI J, LOU B, CHAI L N, FU Y, et al. Influence of boron trifluoride complex addition on structure and composition of mesophase pitch from FCC decant oil via two-stage thermotreatment[J]. Fuel,2022,325:124801. doi: 10.1016/j.fuel.2022.124801
    [17] LIAO G, SHI K, YE C, et al. Influence of resin on the formation and development of mesophase in fluid catalytic cracking (FCC) slurry oil[J]. J Anal Appl Pyrolysis,2023,172:105997. doi: 10.1016/j.jaap.2023.105997
    [18] GUO J G, LU S H, XIE J R, et al. Preparation of mesophase pitch with domain textures by molecular regulation of ethylene tar pitch for boosting the performance of its carbon materials[J]. J Anal Appl Pyrolysis,2023,170:105932 doi: 10.1016/j.jaap.2023.105932
    [19] JIAO S H, GUO A J, WANG F, et al. Sequential pretreatments of an FCC slurry oil sample for preparation of feedstocks for high-value solid carbon materials[J]. Fuel,2021,285:119169. doi: 10.1016/j.fuel.2020.119169
    [20] ZHANG Z C, HUANG X Q, ZHANG L J, et al. Study on the evolution of oxygenated structures in low-temperature coal tar during the preparation of needle coke by co-carbonization[J]. Fuel,2022,307:121811. doi: 10.1016/j.fuel.2021.121811
    [21] ZHANG Z C, YU E Q, LIU Y J, et al. The effect of composition change and allocation in raw material on the carbonaceous structural evolution during calcination process[J]. Fuel,2022,309:122173. doi: 10.1016/j.fuel.2021.122173
    [22] ZHANG Z C, CHEN K, LIU D, et al. Comparative study of the carbonization process and structural evolution during needle coke preparation from petroleum and coal feedstock[J]. J Anal Appl Pyrolysis,2021,156:105097. doi: 10.1016/j.jaap.2021.105097
    [23] ZHU Y M, ZHAO C L, XU Y L, et al. Preparation and characterization of coal pitch-based needle coke (part Ⅰ): the effects of aromatic index (fa) in refined coal pitch[J]. Energy Fuels,2019,33(4):3456−3464. doi: 10.1021/acs.energyfuels.9b00160
    [24] 李磊, 林雄超, 刘哲, 等. 煤系针状焦偏光显微结构的识别及定量分析[J]. 燃料化学学报,2021,49(3):265−273.

    LI Lei, LIN Xiongchao, LIU Zhe, et al. Identification and quantitative analysis of polarized light microstructure of coal-derived needle coke[J]. J Fuel Chem Technol,2021,49(3):265−273.
    [25] 张春阳, 朱亚明, 徐允良, 等. 镶嵌结构沥青焦的制备与表征: 重相沥青中QI含量的影响[J]. 燃料化学学报,2021,49(10):1412−1420.

    ZHANG Chunyang, ZHU Yaming, XU Yunliang, et al. Preparation and characterization of pitch-based mosaic coke from heavy-phase coal pitch: Effects of quinoline insoluble[J]. J Fuel Chem Technol,2021,49(10):1412−1420.
    [26] 高丽娟, 赵雪飞, 赖仕全, 等. 煤焦油精制软沥青组成及结构的表征[J]. 光谱学与光谱分析,2009,29(8):2152−2156 doi: 10.3964/j.issn.1000-0593(2009)08-2152-05

    GAO Lijuan, ZHAO Xuefei, LAI Shiquan, et al. Characterization of composition and structure of refined soft pitch from coal tar[J]. Spectrosc Spect Anal,2009,29(8):2152−2156 doi: 10.3964/j.issn.1000-0593(2009)08-2152-05
  • 加载中
图(12) / 表(10)
计量
  • 文章访问数:  86
  • HTML全文浏览量:  55
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-04
  • 修回日期:  2024-02-03
  • 录用日期:  2024-02-04
  • 网络出版日期:  2024-04-24

目录

    /

    返回文章
    返回