留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Co0.5Cu0.5/CNR催化剂制备及其氨硼烷水解制氢性能研究

左佑华 李蓉 花俊峰 郝思雨 谢婧 许立信 叶明富 万超

左佑华, 李蓉, 花俊峰, 郝思雨, 谢婧, 许立信, 叶明富, 万超. Co0.5Cu0.5/CNR催化剂制备及其氨硼烷水解制氢性能研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60442-1
引用本文: 左佑华, 李蓉, 花俊峰, 郝思雨, 谢婧, 许立信, 叶明富, 万超. Co0.5Cu0.5/CNR催化剂制备及其氨硼烷水解制氢性能研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60442-1
ZUO Youhua, LI Rong, HUA Junfeng, HAO Siyu, XIE Jing, XU Lixin, YE Mingfu, WAN Chao. Preparation of Co0.5Cu0.5/CNR catalyst and its performance in hydrogen production by hydrolysis of ammonia borane[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60442-1
Citation: ZUO Youhua, LI Rong, HUA Junfeng, HAO Siyu, XIE Jing, XU Lixin, YE Mingfu, WAN Chao. Preparation of Co0.5Cu0.5/CNR catalyst and its performance in hydrogen production by hydrolysis of ammonia borane[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60442-1

Co0.5Cu0.5/CNR催化剂制备及其氨硼烷水解制氢性能研究

doi: 10.1016/S1872-5813(24)60442-1
基金项目: 国家自然科学基金青年基金(22108238, U22A20408), 安徽省自然科学基金青年基金(1908085QB68), 中国博士后项目(2019M662060, PC2022046, 2020T130580), 江苏省绿色催化材料与技术重点实验室(BM2012110), 2022、2023年国家级大学生创新创业训练计划项目(202210360037, S202310260212)和生物膜法水质净化及利用技术教育部工程研究中心开放基金(BWPU2023KF06)资助
详细信息
    通讯作者:

    E-mail: lxxu@hotmail.com

    wanchao@zju.edu.cn

  • 中图分类号: O643.36

Preparation of Co0.5Cu0.5/CNR catalyst and its performance in hydrogen production by hydrolysis of ammonia borane

Funds: The project was supported by the National Natural Science Foundation of China (22108238, U22A20408), Anhui Provincial Natural Science Foundation (1908085QB68), China Postdoctoral Science Foundation (2019M662060, PC2022046, 2020T130580), Open Research Funds of Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology (BM2012110), 2022, 2023 National UndergraDuate Innovation and Entrepreneurship Training Program (202210360037, S202310260212), Supported by the Open Project of Engineering Research Center of Biofilm Water Purification and Utiliza-tion Technology of Ministry of Education (BWPU2023KF06).
  • 摘要: 以硝酸钴和硝酸铜制备溶液A,苯二甲酸(PTA)和N,N-二甲基甲酰胺(DMF)制备溶液B,两种溶液通过溶剂热法制备Co/Cu拉瓦希尔骨架系列材料(Co/Cu-MIL前驱体),进一步直接碳化前驱体制备出MOFs衍生物,即双金属碳纳米棒(CoxCu1−x/CNR)催化剂。通过SEM、TEM、XRD、XPS等表征手段探究其形貌和组成。结果表明,Co/Cu-MIL经过高温焙烧后成功得到CoxCu1−x/CNR,当x=0.5、溶剂热温度为120 ℃、焙烧温度为650 ℃时得到的催化剂催化活性最优,Co0.5Cu0.5/CNR催化剂催化氨硼烷(AB)水解制氢的TOF值为2718.21 h−1,反应的活化能为51.64 kJ/mol,且催化剂的循环稳定性较好,在循环10次后催化活性虽然有所下降,但对AB仍然保持100%的转化率。
  • 图  1  (a)−(c)Co-MIL、Co0.5Cu0.5-MIL和Cu-MIL的SEM图像;(d)−(i)Co/CNR、Co0.5Cu0.5/CNR和Cu/CN催化剂的SEM图像

    Figure  1  SEM images of Co-MIL, Co0.5Cu0.5-MIL and Cu-MIL(a)-(c) and Co/CNR, Co0.5Cu0.5/CNR and Cu/CN (d)-(i)

    图  2  (a)−(c)Co0.5Cu0.5/CNR不同放大倍率的TEM图像;(d)晶格条纹计算图像;(e)Co0.5Cu0.5/CNR中Co、Cu和C的相应元素映射

    Figure  2  TEM images of Co0.5Cu0.5/CNR with different magnification(a)-(c), images of lattice fringe (d) and the corresponding elemental mapping of Co, Cu, and C (e)

    图  3  (a)CoxCu1−x-MIL, (b)CoxCu1−x/CNR对应的XRD谱图

    Figure  3  XRD patterns of (a) CoxCu1−x-MIL and (b) CoxCu1−x/CNR

    图  4  (a)Co/CNR、Co0.5Cu0.5/CNR和Cu/CN的全谱图以及相对应的精细谱图(b)C 1s,(c)Co 2p,(d)Cu 2p

    Figure  4  Full XPS spectra of Co/CNR, Co0.5Cu0.5/CNR and Cu/CN (a) and fine spectra of C 1s (b), Co 2p (c) and Cu 2p (d)

    图  5  (a)不同CoCu物质的量比催化剂催化AB水解制氢的速率曲线以及(b)与之对应的TOF值

    Figure  5  Hydrolysis rates of AB over catalysts with different CoCu molar ratio (a) and the corresponding TOF values (b)

    图  6  (a)不同溶剂热温度所制备的催化剂催化AB水解制氢的速率曲线以及(b)与之对应的TOF值

    Figure  6  Reaction rates of AB Hydrolysis over catalysts with different solvothermal temperatures (a) and the corresponding TOF values (b)

    图  7  (a)焙烧温度对Co0.5Cu0.5/CNR催化AB水解制氢的影响以及(b)与之对应的TOF值

    Figure  7  Effect of calcination temperature on the activity of Co0.5Cu0.5/CNR (a) and the corresponding TOF values (b)

    图  8  (a)不同用量的Co0.5Cu0.5/CNR催化AB水解制氢的速率曲线;(b)ln[k]-ln[cat.]拟合曲线

    Figure  8  Effect of catalyst dosage on the reaction (a) and the fitting curve of ln[k]-ln[cat.] (b)

    图  9  (a)Co0.5Cu0.5/CNR催化AB水解制氢速率随自身浓度变化;(b)ln[k]-ln[AB]的拟合曲线

    Figure  9  Effect of AB concentration on the reaction rate of Co0.5Cu0.5/CNR(a) and the fitting curve of ln[k]-ln[AB] (b)

    图  10  反应温度对催化剂Co/CNR、Co0.5Cu0.5/CNR和Cu/CN催化AB水解制氢的影响以及ln[k]−1/T的Arrhenius图

    Figure  10  Effect of temperature on hydrolysis of AB over Co/CNR、Co0.5Cu0.5/CNR and Cu/CN catalysts and the Arrhenius diagram of ln[k]−1/T

    图  11  Co0.5Cu0.5/CNR催化AB水解制氢循环性能

    Figure  11  Cycle stability of Co0.5Cu0.5/CNR for hydrogen generation from AB hydrolysis

    图  12  Co0.5Cu0.5/CNR循环测试反应后的不同倍率SEM图像

    Figure  12  SEM images of the Co0.5Cu0.5/CNR catalyst after cycling with different magnifications

    表  1  钴铜催化剂催化氨硼烷水解制氢的催化活性

    Table  1  Reported activity of cobalt-copper bimetallic catalysts for the hydrolysis of ammonia borane

    Catalyst Temp.
    /℃
    TOF
    /h−1
    Ea
    /(kJ·mol−1)
    Ref.
    Co0.5Cu0.5/CNR 25 2718.21 51.64 this work
    Cu0.4Co0.6/BN nanofibers 25 505.2 21.8 [39]
    CuCo(O)@CN 25 744 33.8 [40]
    Cu@Co/rGO 25 522 51.3 [41]
    CuCo2O4 25 2640 23.6 [42]
    Cu2O-CoO 25 2046 34.1 [43]
    Cu0.3@Cu0.7CoOx@GO 25 2676 35.4 [44]
    Co40Cu60@ S16LC-20 25 984 38.1 [45]
    CuO-Co3O4 25 2004 39.6 [46]
    下载: 导出CSV
  • [1] MBOYI C D, POINSOT D, ROGER J, et al. The hydrogen-storage challenge: Nanoparticles for metal-catalyzed ammonia borane dehydrogenation[J]. Small,2021,17(44):2102759. doi: 10.1002/smll.202102759
    [2] YANG Z X, LI X G, YAO Q L, et al. 2022 roadmap on hydrogen energy from production to utilizations[J]. Rare Metals,2022,41:3251−3267. doi: 10.1007/s12598-022-02029-7
    [3] 吴慧, 郑君宁, 左佑华, 等. NiPd/TiO2催化剂的制备及催化甲酸分解制氢[J]. 精细化工, 2023.

    WU Hui, ZHENG Junning, ZUO Youhua, et al. Preparation of NiPd/TiO2 catalysts and catalytic hydrogen production from formic acid decomposition[J]. Fine Chem, 2023.)
    [4] WAN C, ZHOU L, XU S M, et al. Defect engineered mesoporous graphitic carbon nitride modified with AgPd nanoparticles for enhanced photocatalytic hydrogen evolution from formic acid[J]. Chem Eng J,2022,429:132388. doi: 10.1016/j.cej.2021.132388
    [5] MORAD Z, KARIM T, ANTONIO J N, et al. Effective photocatalytic conversion of formic acid using iron, copper and sulphate doped TiO2[J]. J Cent South Univ,2022,29(11):3592−3607. doi: 10.1007/s11771-022-5172-9
    [6] 梁雨, 李贵, 郑君宁, 等. NiPt/SBA-15 纳米催化剂的制备及其催化水合肼分解产氢性能研究[J]. 燃料化学学报(中英文),2023,51(5):684−692.

    LIANG Yu, LI Gui, ZHENG Junning, et al. Preparation of NiPt/SBA-15 nanocatalyst and its catalytic performance for the dehydrogenation of hydrous hydrazine[J]. J Fuel Chem Technol,2023,51(5):684−692.
    [7] 曹云钟, 郑君宁, 吴慧, 等. Pt基催化剂催化氨硼烷水解产氢的研究进展[J]. 稀有金属,2023,47(8):1122−1131.

    CAO Yunzhong, ZHENG Junning, WU Hui, et al. Advances in hydrogen production by ammonia borane hydrolysis over Pt-based catalysts[J]. Rare Met,2023,47(8):1122−1131.
    [8] KINSIZ B N, FILIZ B C, DEPREN S K, et al. Nano-casting procedure for catalytic cobalt oxide bead preparation from calcium-alginate capsules: Activity in ammonia borane hydrolysis reaction[J]. Appl Mater Today,2021,22:100952. doi: 10.1016/j.apmt.2021.100952
    [9] CAI C, HAN S B, LIU W, et al. Tuning catalytic performance by controlling reconstruction process in operando condition[J]. Appl Catal B: Environ,2020,260:118103. doi: 10.1016/j.apcatb.2019.118103
    [10] LI Y, HU M W, WANG J S, et al. DFT studies on the Ru-catalyzed hydrolysis of ammonia borane[J]. J Organomet Chem,2019,899:120913. doi: 10.1016/j.jorganchem.2019.120913
    [11] 李燕, 邓雨真, 俞晶铃, 等. 氨硼烷分解制氢及其再生的研究进展[J]. 化工进展,2019,38(12):5330−5338.

    LI Yan, DENG Yuzhen, YU Jingling, et al. Research progress in hydrogen production from decomposition of ammonia borane and its regeneration[J]. Chem Ind Eng Prog,2019,38(12):5330−5338.
    [12] DEMIRCI U B. Mechanistic insights into the thermal decomposition of ammonia borane, a material studied for chemical hydrogen storage[J]. Inorg Chem Front,2021,8:1900−1930. doi: 10.1039/D0QI01366H
    [13] SEMIZ L. Hydrogen generation from ammonia borane by polymer supported platinum films[J]. Chem Phys Lett,2021,767:138365. doi: 10.1016/j.cplett.2021.138365
    [14] 王小燕, 张若凡, 司航, 等. 椰壳炭负载钌催化剂的制备及其催化氨硼烷水解制氢性能[J]. 石油炼制与化工,2023,54(7):64−70.

    WANG Xiaoyan, ZHANG Ruofan, SI Hang, et al. Preparation of coconut shell charcoal-loaded ruthenium catalysts and their catalytic performance for hydrogen production from hydrolysis of ammonia borane[J]. Pet Process Petrochem,2023,54(7):64−70.
    [15] 任杨斌, 范燕平, 刘宪云, 等. 镍基催化剂催化氨硼烷水解产氢研究进展[J]. 中国材料进展,2022,41(4):288−295.

    REN Yangbin, FAN Yanping, LIU Xianyun, et al. Research progress on hydrogen generation by catalytic hydrolysis of ammonia borane over Ni catalysts[J]. Mater China,2022,41(4):288−295.
    [16] AKBAYRAK S, OZKAR S. Ammonia borane as hydrogen storage materials[J]. Int J Hydrogen Energy,2018,43(40):18592−18606. doi: 10.1016/j.ijhydene.2018.02.190
    [17] 邱小魁, 张若凡, 王小燕, 等. 竹茹丝炭负载钌催化剂光催化氨硼烷水解产氢研究[J]. 无机盐工业,2023,55(10):153−158.

    QIU Xiaokui, ZHANG Ruofan, WANG Xiaoyan, et al. Hydrogen production by photocatalytic hydrolysis of ammonia borane over Bamboo Rhizoma Pinelliae silk charcoal loaded ruthenium catalysts[J]. Inorg Chem Ind,2023,55(10):153−158.
    [18] LU Q, HUTCHINGS G S, YU W, et al. Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution[J]. Nat Commun,2015,6(1):6567. doi: 10.1038/ncomms7567
    [19] SUKACKIENĖ Z, VALECKYTĖ G, KEPENIENĖ V, et al. Non-precious metals catalysts for hydrogen generation[J]. Coat,2023,13(10):1740. doi: 10.3390/coatings13101740
    [20] GUPTA S, FERNANDES R, PATEL R, et al. A review of cobalt-based catalysts for sustainable energy and environmental applications[J]. Appl Catal A: Gen,2023,661:119254. doi: 10.1016/j.apcata.2023.119254
    [21] 黄康, 朱梅婷, 张飞鹏, 等. 一种高效双功能电催化剂 CoP/Co@ NPC@ rGO的制备[J]. 工程科学学报,2020,42(1):91−98.

    (HUANG Kang, ZHU Meiting, ZHANG Feipeng, et al. Preparation of CoP/Co@NPC@rGO nanocomposites with an efficient bifunctional electrocatalyst for hydrogen evolution and oxygen evolution reaction[J]. Chin J Eng,2020,42(1):91−98.
    [22] YAN J M, ZHANG X B, SHIOYAMA H, et al. Room temperature hydrolytic dehydrogenation of ammonia borane catalyzed by Co nanoparticles[J]. J Power Sources,2010,195(4):1091−1094. doi: 10.1016/j.jpowsour.2009.08.067
    [23] SANG W L, WANG C Y, ZHANG X H, et al. Dendritic Co0.52Cu0.48 and Ni0.19Cu0.81 alloys as hydrogen generation catalysts via hydrolysis of ammonia borane[J]. Int J Hydrogen Energy,2017,42(52):30691−30703. doi: 10.1016/j.ijhydene.2017.10.130
    [24] LU D S, LIAO J Y, ZHONG S D, et al. Cu0.6Ni0.4Co2O4 nanowires, a novel noble-metal-free catalyst with ultrahigh catalytic activity towards the hydrolysis of ammonia borane for hydrogen production[J]. Int J Hydrogen Energy,2018,43(11):5541−5550. doi: 10.1016/j.ijhydene.2018.01.129
    [25] LI H, EDDAOUDI M, O’KEEFFE M. Design and synthesis of an exceptionally stable and highly porous metalorganic framework[J]. Nature,1999,402:276−279. doi: 10.1038/46248
    [26] DE VILLENOISY T, ZHENG X, WONG V, et al. Principles of design and synthesis of metal derivatives from MOFs[J]. Adv Mater, 2023: 2210166.
    [27] PODOR R, LE GOFF X, LAUTRU J, et al. Direct observation of the surface topography at high temperature with SEM[J]. Microsc Microanal,2020,26(3):397−402. doi: 10.1017/S1431927620001348
    [28] 陈峰, 黄莹莹, 颜桂炀, 等. 氧化铜/氧化锌/3A分子筛光催化剂的制备及其可见光脱氮性能[J]. 应用化学,2015,32(9):1040−1047

    CHEN Feng, HUANG Yingying, YAN Guiyang, et al. Preparation and visible light denitrification performance of copper oxide/Zinc oxide/3A molecular sieve photocatalyst[J]. Chin J Appl Chem,2015,32(9):1040−1047.
    [29] CHOI W S, SHIN H C. Microporous sponge structure with copper-cobalt oxide hybrid nanobranches[J]. J Alloys Compd,2017,692:670−675. doi: 10.1016/j.jallcom.2016.09.090
    [30] DING S, ZHU C, HOJO H, et al. Insights into the effect of cobalt substitution into copper-manganese oxides on enhanced benzene oxidation activity[J]. Appl Catal B: Environ,2023,323:122099. doi: 10.1016/j.apcatb.2022.122099
    [31] YANG G. , GUAN S. Y. , SEHRISH M. , et al. Co-CoOx supported onto TiO2 coated with carbon as a catalyst for efficient and stable hydrogen generation from ammonia borane[J]. Green Energy Environ, 2020.
    [32] PEI X, SHU H, FENG Y. Preparation of nitrogen-doped carbon-based bimetallic copper-cobalt catalysis based on deep learning and its monitoring application in furfural hydrogenation[J]. Scientific Programming, 2022.
    [33] LE S D, NISHIMURA S. Effect of support on the formation of CuPd alloy nanoparticles for the hydrogenation of succinic acid[J]. Appl Catal B: Environ. , 2021, 282 : 119619.
    [34] MOSTAFA M M M, BAJAFAR W, GU L, et al. Electrochemical characteristics of nanosized Cu, Ni, and Zn cobaltite spinel materials[J]. Catal,2022,12(8):893.
    [35] ZHANG Q, ZUO J, WANG L, et al. Non noble-metal copper-cobalt bimetallic catalyst for efficient catalysis of the hydrogenolysis of 5-hydroxymethylfurfural to 2, 5-dimethylfuran under mild conditions[J]. ACS omega,2021,6(16):10910−10920. doi: 10.1021/acsomega.1c00676
    [36] WAN C, LIANG Y, ZHOU L, et al. Integration of morphology and electronic structure modulation on cobalt phosphide nanosheets to boost photocatalytic hydrogen evolution from ammonia borane hydrolysis[J]. Green Energy Environ, 2022.
    [37] CHUAICHAM C, LI W, WILSON K, et al. Surfactant and template-free hydrothermal assembly of Cu2O visible light photocatalysts for trimethoprim degradation[J]. Appl Catal B: Environ, 2021, 284: 119741.
    [38] LIU J, LI B, DONG Y, et al. Hydrolysis of ammonia borane for hydrogen generation on bimetallic CoCu catalysts: Regulation of synergistic effect[J]. Catal Lett,2024,154(2):461−472. doi: 10.1016/j.ijhydene.2020.04.2
    [39] YANG X, LI Q L, LI L L, et al. CuCo binary metal nanoparticles supported on boron nitride nanofibers as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. J Power Sources,2019,431:135−143. doi: 10.1016/j.jpowsour.2019.05.038
    [40] YUAN Y, CHEN X, ZHANG X, et al. A MOF-derived CuCo(O)@carbon-nitrogen framework as an efficient synergistic catalyst for the hydrolysis of ammonia borane[J]. Inorg Chem Front,2020,7(10):2043−2049. doi: 10.1039/D0QI00023J
    [41] DU Y, CAO N, YANG L, et al. One-step synthesis of magnetically recyclable rGO supported Cu@Co core-shell nanoparticles: Highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane and methylamine borane[J]. New J Chem,2013,37(10):3035−3042. doi: 10.1039/c3nj00552f
    [42] LIU Q, ZHANG S, LIAO J, et al. CuCo2O4 nanoplate film as a low-cost, highly active and durable catalyst towards the hydrolytic dehydrogenation of ammonia borane for hydrogen production[J]. J Power Sources,2017,355:191−198. doi: 10.1016/j.jpowsour.2017.04.057
    [43] FENG Y, WANG H, CHEN X, et al. Simple synthesis of Cu2O-CoO nanoplates with enhanced catalytic activity for hydrogen production from ammonia borane hydrolysis[J]. Int J Hydrogen Energy,2020,45(35):17164−17173. doi: 10.1016/j.ijhydene.2020.04.257
    [44] LI J, REN X, LV H, et al. Highly efficient hydrogen production from hydrolysis of ammonia borane over nanostructured Cu@CuCoOx supported on graphene oxide[J]. J Hazard Mater,2020,391:122199. doi: 10.1016/j.jhazmat.2020.122199
    [45] DEKA J R, SAIKIA D, LU N F, et al. Space confined synthesis of highly dispersed bimetallic CoCu nanoparticles as effective catalysts for ammonia borane dehydrogenation and 4-nitrophenol reduction[J]. Appl Surf Sci,2021,538:148091. doi: 10.1016/j.apsusc.2020.148091
    [46] LIAO J, FENG Y, ZHANG X, et al. CuO-Co3O4 composite nanoplatelets for hydrolyzing ammonia borane[J]. ACS Appl Nano Mater.,2021,4(8):7640−7649. doi: 10.1021/acsanm.1c00713
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  115
  • HTML全文浏览量:  44
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-04
  • 修回日期:  2024-02-07
  • 录用日期:  2024-02-26
  • 网络出版日期:  2024-04-23

目录

    /

    返回文章
    返回