留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Regulating crystal phase of TiO2 to enhance catalytic activity of Ni/TiO2 for solar-driven dry reforming of methane

HE Zhanjun GONG Kun DAI Yuanyuan NIU Qiang LIN Tiejun ZHONG Liangshu

何展军, 龚坤, 代元元, 牛强, 林铁军, 钟良枢. 调控Ni/TiO2载体晶相结构实现高活性光热干重整制合成气[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60452-4
引用本文: 何展军, 龚坤, 代元元, 牛强, 林铁军, 钟良枢. 调控Ni/TiO2载体晶相结构实现高活性光热干重整制合成气[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60452-4
HE Zhanjun, GONG Kun, DAI Yuanyuan, NIU Qiang, LIN Tiejun, ZHONG Liangshu. Regulating crystal phase of TiO2 to enhance catalytic activity of Ni/TiO2 for solar-driven dry reforming of methane[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60452-4
Citation: HE Zhanjun, GONG Kun, DAI Yuanyuan, NIU Qiang, LIN Tiejun, ZHONG Liangshu. Regulating crystal phase of TiO2 to enhance catalytic activity of Ni/TiO2 for solar-driven dry reforming of methane[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60452-4

调控Ni/TiO2载体晶相结构实现高活性光热干重整制合成气

doi: 10.1016/S1872-5813(24)60452-4
详细信息
  • 中图分类号: TQ546

Regulating crystal phase of TiO2 to enhance catalytic activity of Ni/TiO2 for solar-driven dry reforming of methane

Funds: This work received support from the National Key R&D Program of China (2021YFF0500702), Natural Science Foundation of Shanghai (22JC1404200), Program of Shanghai Academic/Technology Research Leader (20XD1404000), Natural Science Foundation of China (U22B20136, 22293023), Science and Technology Major Project of Inner Mongolia (2021ZD0042) and the Youth Innovation Promotion Association of CAS.
More Information
  • 摘要: Ni/TiO2催化剂被广泛应用于光热干重整反应中,然而不同TiO2晶相对于反应性能的影响尚不清楚。本文通过改变锐钛矿TiO2的焙烧温度,成功制备了不同金红石/锐钛矿混合比例的载体。结构表征表明,锐钛矿TiO2具有较强的金属-载体间相互作用,促使Ni/TiO2在还原过程中形成TiOx包覆层,大幅减少暴露的Ni活性位点。随着金红石/锐钛矿比例的增加,金属-载体间相互作用变弱,TiOx包覆层逐渐消失,从而促进了Ni活性位点的暴露。暴露的Ni位点不仅可增强可见光吸收,同时也提高了CH4的解离能力。性能评价显示,金红石/锐钛矿比例对光热干重整反应活性影响较大。具有金红石相的Ni/TiO2-950催化剂表现出最高的反应活性,H2和CO产率分别达到87.4和220.2 mmol/(g·h),分别为锐钛矿相Ni/TiO2-700催化剂的257倍和130倍。本研究表明,通过改变TiO2晶体结构可有效提高光热干重整反应活性,从而为高效光热催化剂的设计提供了一条简单易行的策略。
  • Figure  1  (a) XRD patterns of TiO2-X supports; (b) Raman spectra of the TiO2-X supports; (c) XRD patterns of reduced Ni/TiO2-X catalysts; (d) UV-Vis DRS spectra of reduced Ni/TiO2-X catalysts.

    Figure  2  SEM images of the TiO2-X catalysts (a) TiO2-700, (b) TiO2-850, (c) TiO2-900 and (d) TiO2-950.

    Figure  3  (HR)TEM images and histogram for Ni particle size distribution of the reduced Ni/TiO2-X catalysts. (a–c) Ni/TiO2-700, (d–f) Ni/TiO2-850, (g–i) Ni/TiO2-900 and (j–l) Ni/TiO2-950.

    Figure  4  (a) Production rate of CO and H2 on Ni/TiO2-X catalysts, reaction conditions: 10 mg catalyst, 7.9 W cm−2, 60 L/(g·h); (b) Production rate of CO and H2 on the Ni/TiO2-950 catalysts with different light intensity, reaction conditions: 10 mg catalyst, 60 L/(g·h); (c) Catalytic performance of the Ni/TiO2-950 catalysts with different catalyst mass, reaction conditions: 15.0 W cm−2; (d) Solar-to-fuel efficiency of the Ni/TiO2-950 catalyst with different WHSV, reaction conditions: 5 mg catalyst, 15.0 W cm−2.

    Figure  5  (a) H2-TPR profiles of TiO2-X and Ni/TiO2-X (solid lines: Ni/TiO2-X; dashed lines: TiO2-X).; (b) The O 1s XPS spectra of various Ni/TiO2-X catalysts.

    Figure  6  (a) MS signal of H2 in CH4-TPSR-MS for various Ni/TiO2-X catalysts; (b) The Ni 2p XPS spectra of various Ni/TiO2-X catalysts; (c) Transient response curves obtained from propene hydrogenation-pulse experiment of Ni/TiO2-700; (d) Transient response curves obtained from propene hydrogenation-pulse experiment of Ni/TiO2-950.

    Table  1  Physiochemical properties of various catalysts.

    Catalysts aPhase contents/% bNi/% cNi/nm dNi/nm
    anatase rutile
    Ni/TiO2-700 100 0 5.27 15.0 13.3
    Ni/TiO2-850 82.6 17.4 5.14 12.7 13.7
    Ni/TiO2-900 14.1 85.9 5.12 13.4 14.4
    Ni/TiO2-950 0 100 5.14 13.9 13.9
    aThe phase content of TiO2-X was estimated from XRD. bThe Ni loading measured by XRF. cThe Ni crystal sizes after reduction were calculated from XRD. dThe Ni crystal sizes after reduction were calculated from TEM.
    下载: 导出CSV

    Table  2  The ratios of surface Ni/Ti before and after reduction, estimated by XPS.

    CatalystsNi/Ti ratio of reduced catalyst
    Ni/TiO2-7000.05
    Ni/TiO2-8500.29
    Ni/TiO2-9000.32
    Ni/TiO2-9500.37
    下载: 导出CSV
  • [1] ALHASSAN A M, HUSSAIN I, TAIALLA O A, et al. Advances in catalytic dry reforming of methane (DRM): Emerging trends, current challenges, and future perspectives[J]. J Cleaner Prod, 2023: 138638.
    [2] LI R, ZHENG Y, GONG K, et al. Recent Advances in the Conversion of Methane to Syngas and Chemicals via Photocatalysis[J]. ChemPhotoChem, e202300240.
    [3] PAKHARE D, SPIVEY J. A review of dry (CO2) reforming of methane over noble metal catalysts[J]. Chem Soc Rev,2014,43(22):7813−7837. doi: 10.1039/C3CS60395D
    [4] ZHONG L, YU F, AN Y, et al. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature,2016,538(7623):84−87. doi: 10.1038/nature19786
    [5] YAO T, AN Y, YU H, et al. Support effects on Ru-based catalysts for Fischer-Tropsch synthesis to olefins[J]. J Fuel Chem Technol,2023,51(10):1400−1410. doi: 10.1016/S1872-5813(23)60351-2
    [6] GONG K, WEI Y, DAI Y, et al. Carbon-encapsulated metallic Co nanoparticles for Fischer-Tropsch to olefins with low CO2 selectivity[J]. Appl Catal B: Environ,2022,316:121700. doi: 10.1016/j.apcatb.2022.121700
    [7] SONG Y, OZDEMIR E, RAMESH S, et al. Dry reforming of methane by stable Ni–Mo nanocatalysts on single-crystalline MgO[J]. Science,2020,367(6479):777−781. doi: 10.1126/science.aav2412
    [8] MARGOSSIAN T, LARMIER K, KIM S M, et al. Molecularly tailored nickel precursor and support yield a stable methane dry reforming catalyst with superior metal utilization[J]. J Am Chem Soc,2017,139(20):6919−6927. doi: 10.1021/jacs.7b01625
    [9] HE Z, HUANG M, LIN T, et al. Recent Advances in Dry Reforming of Methane via Photothermocatalysis[J]. Acta Phys-Chim Sin, 2023, 39(9).
    [10] CHEN H, NANAYAKKARA C E, GRASSIAN V H. Titanium dioxide photocatalysis in atmospheric chemistry[J]. Chem Rev,2012,112(11):5919−5948. doi: 10.1021/cr3002092
    [11] GÜNNEMANN C, HAISCH C, FLEISCH M, et al. Insights into different photocatalytic oxidation activities of anatase, brookite, and rutile single-crystal facets[J]. ACS Catal,2018,9(2):1001−1012.
    [12] ROOSE B, PATHAK S, STEINER U. Doping of TiO2 for sensitized solar cells[J]. Chem Soc Rev,2015,44(22):8326−8349. doi: 10.1039/C5CS00352K
    [13] BOJINOVA A, KRALCHEVSKA R, POULIOS I, et al. Anatase/rutile TiO2 composites: Influence of the mixing ratio on the photocatalytic degradation of Malachite Green and Orange II in slurry[J]. Mater Chem Phys,2007,106(2-3):187−192. doi: 10.1016/j.matchemphys.2007.05.035
    [14] RUAN X, CUI X, CUI Y, et al. Favorable energy band alignment of TiO2 anatase/rutile heterophase homojunctions yields photocatalytic hydrogen evolution with quantum efficiency exceeding 45.6%[J]. Adv Energy Mater,2022,12(16):2200298. doi: 10.1002/aenm.202200298
    [15] SAHEL K, ELSELLAMI L, MIRALI I, et al. Hydrogen peroxide and photocatalysis[J]. Appl Catal B: Environ,2016,188:106−112. doi: 10.1016/j.apcatb.2015.12.044
    [16] LI T, CHENG J, LI D, et al. Hollow spherical Ni/ZrO2 as a superior catalyst for syngas production from photothermal synergistic dry reforming of methane[J]. Catal Sci Technol, 2024.
    [17] LORBER K, ZAVAŠNIK J, SANCHO-PARRAMON J, et al. On the mechanism of visible-light accelerated methane dry reforming reaction over Ni/CeO2−x catalysts[J]. Appl Catal B: Environ,2022,301:120745. doi: 10.1016/j.apcatb.2021.120745
    [18] RAO Z, CAO Y, HUANG Z, et al. Insights into the nonthermal effects of light in dry reforming of methane to enhance the H2/CO ratio near unity over Ni/Ga2O3[J]. ACS Catal,2021,11(8):4730−4738. doi: 10.1021/acscatal.0c04826
    [19] RAO Z, WANG K, CAO Y, et al. Light-reinforced key intermediate for anticoking to boost highly durable methane dry reforming over single atom Ni active sites on CeO2[J]. J Am Chem Soc,2023,145(45):24625−24635.
    [20] TAVASOLI A, GOUDA A, ZÄHRINGER T, et al. Enhanced hybrid photocatalytic dry reforming using a phosphated Ni-CeO2 nanorod heterostructure[J]. Nat Commun,2023,14(1):1435. doi: 10.1038/s41467-023-36982-3
    [21] XIE T, ZHANG Z Y, ZHENG H Y, et al. Enhanced photothermal catalytic performance of dry reforming of methane over Ni/mesoporous TiO2 composite catalyst[J]. Chem Eng J,2022,429:132507. doi: 10.1016/j.cej.2021.132507
    [22] ZHANG Q, LI Y, WU S, et al. UV-vis-IR irradiation driven CO2 reduction with high light-to-fuel efficiency on a unique nanocomposite of Ni nanoparticles loaded on Ni doped Al2O3 nanosheets[J]. J Mater Chem A,2019,7(34):19800−19810. doi: 10.1039/C9TA06923B
    [23] ZHAO J, GUO X, SHI R, et al. NiFe nanoalloys derived from layered double hydroxides for photothermal synergistic reforming of CH4 with CO2[J]. Adv Funct Mater,2022,32(31):2204056. doi: 10.1002/adfm.202204056
    [24] PADAYACHEE D, MAHOMED A S, SINGH S, et al. Effect of the TiO2 anatase/rutile ratio and interface for the oxidative activation of n-octane[J]. ACS Catal,2020,10(3):2211−2220. doi: 10.1021/acscatal.9b04004
    [25] WANG Z, HUANG X, JIA Y, et al. Localized surface plasmon resonance-induced bidirectional electron transfer of formic acid adsorption for boosting photocatalytic hydrogen production on Ni/TiO2[J]. Chem Eng J,2024,482:148942. doi: 10.1016/j.cej.2024.148942
    [26] YI X, YANG Y, XU D, et al. Metal–Support Interactions on Ag/Co3O4 Nanowire Monolithic Catalysts Promoting Catalytic Soot Combustion[J]. Trans Tianjin Univ,2022,28(3):174−85. doi: 10.1007/s12209-022-00325-y
    [27] LU J, ZHANG S, ZHOU H, et al. Ir Single Atoms and Clusters Supported on α-MoC as Catalysts for Efficient Hydrogenation of CO2 to CO[J]. Acta Phys-Chim Sin,2023,39(11):2302021.
    [28] LI Q, WANG C, WANG H, et al. Disclosing Support-Size-Dependent Effect on Ambient Light-Driven Photothermal CO2 Hydrogenation over Nickel/Titanium Dioxide[J]. Angew Chem,2024,136(10):e202318166. doi: 10.1002/ange.202318166
    [29] LIN Y, ZHU Y, PAN X, et al. Modulating the methanation activity of Ni by the crystal phase of TiO2[J]. Catal Sci Technol,2017,7(13):2813−2818. doi: 10.1039/C7CY00124J
    [30] XU M, QIN X, XU Y, et al. Boosting CO hydrogenation towards C2+ hydrocarbons over interfacial TiO2−x/Ni catalysts[J]. Nat Commun,2022,13(1):6720. doi: 10.1038/s41467-022-34463-7
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  110
  • HTML全文浏览量:  37
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-29
  • 修回日期:  2024-03-20
  • 录用日期:  2024-03-25
  • 网络出版日期:  2024-05-13

目录

    /

    返回文章
    返回