留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

构筑Ni/ZnCo2O4@ZnO复合金属氧化物脱硫剂及其反应吸附脱硫-再生性能研究

代璞 郭梦雅 葛晖 樊彩梅 李学宽 李瑞 唐明兴

代璞, 郭梦雅, 葛晖, 樊彩梅, 李学宽, 李瑞, 唐明兴. 构筑Ni/ZnCo2O4@ZnO复合金属氧化物脱硫剂及其反应吸附脱硫-再生性能研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60463-9
引用本文: 代璞, 郭梦雅, 葛晖, 樊彩梅, 李学宽, 李瑞, 唐明兴. 构筑Ni/ZnCo2O4@ZnO复合金属氧化物脱硫剂及其反应吸附脱硫-再生性能研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60463-9
DAI Pu, GUO Mengya, GE Hui, FAN Caimei, LI Xuekuan, LI Rui, TANG Mingxing. Construction of Ni/ZnCo2O4@ZnO composite metal oxide desulfurization agent and its reactive adsorption desulfurization-regeneration properties[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60463-9
Citation: DAI Pu, GUO Mengya, GE Hui, FAN Caimei, LI Xuekuan, LI Rui, TANG Mingxing. Construction of Ni/ZnCo2O4@ZnO composite metal oxide desulfurization agent and its reactive adsorption desulfurization-regeneration properties[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60463-9

构筑Ni/ZnCo2O4@ZnO复合金属氧化物脱硫剂及其反应吸附脱硫-再生性能研究

doi: 10.1016/S1872-5813(24)60463-9
基金项目: 国家自然科学基金(22072173, U19100202, 22008167), 国家重点研发计划(2023YFB4103300), 新疆生产建设兵团第八师石河子市科技项目(2022JB02)和山西省重点研发计划(202102090301005)资助
详细信息
    通讯作者:

    E-mail: lirui13233699182@163.com, Tel: 13834156741

    mxtang@sxicc.ac.cn, Tel: 13233699182

  • 中图分类号: TE624

Construction of Ni/ZnCo2O4@ZnO composite metal oxide desulfurization agent and its reactive adsorption desulfurization-regeneration properties

Funds: The project was supported by the National Natural Science Foundation (22072173, U19100202, 22008167), National Key Research and Development Program (2023YFB4103300), the 8th Division of Xinjiang Production and Construction Corps, Science and Technology Project of Shihezi City (2022JB02), Key Research and Development Program of Shanxi Province (202102090301005).
  • 摘要: 采用共沉淀法在ZnO中引入金属Co并使其形成复合金属氧化物,通过共沉淀-浸渍法构筑了不同Co含量的复合金属氧化物脱硫剂,考察其脱硫活性和再生性能。采用XRD、TEM、N2低温吸附-脱附、XPS和H2-TPR等对脱硫剂的结构和性质进行系统表征,证实得到了Ni/ZnCo2O4@ZnO结构的复合金属氧化物脱硫剂。复合金属氧化物脱硫剂中ZnCo2O4的形成有利于脱硫剂的颗粒尺寸减小、分散度提升、比表面积增加。反应后XRD显示,ZnCo2O4也可作为H2S的吸附剂,从而提高了脱硫剂的硫吸附容量。所有的复合金属氧化物脱硫剂的脱硫性能显著优于Ni/ZnO,其中,Zn∶Co物质的量比为1∶1的脱硫剂NZCo-3具有最优的脱硫性能,该脱硫剂在反应温度300 ℃,氢压3 MPa,质量空速2.2 h−1,氢油体积比300的条件下脱硫率为100%,且经过六次循环后仍能够保持优异的脱硫性能。该研究结果为合理设计Ni/ZnO脱硫剂以提高其脱硫性能和再生性能提供新的思路。
  • 图  1  NZ和NZCo-x脱硫剂的XRD谱图

    Figure  1  XRD spectra of NZ and NZCo-x desulfurization agent

    图  2  NZ和NZCo-x脱硫剂的N2吸附-解吸等温曲线(a)与孔径分布(b)

    Figure  2  N2 adsorption-desorption isotherms (a) versus pore size distribution (b) for NZ and NZCo-x desulfurization agent

    图  3  脱硫剂的TEM和HRTEM图像

    Figure  3  TEM and HRTEM images of desulfurization agent

    (a)−(c): NZ; (d)−(f): NZCo-1; (g)−(i): NZCo-2; (j)−(l): NZCo-3; (m)−(o): NZCo-4.

    图  4  NZ和NZCo-x脱硫剂的XPS谱图

    Figure  4  XPS spectra of NZ and NZCo-x desulfurization agent

    (a): Zn 2p; (b): Co 2p.

    图  5  NZ和NZCo-x脱硫剂的H2-TPR谱图

    Figure  5  H2-TPR profiles of NZ and NZCo-x desulfurization agent

    图  6  NZ和NZCo-x脱硫剂反应吸附脱硫性能

    Figure  6  Reactive adsorption desulfurization performance of NZ and NZCo-x desulfurization agent

    图  7  反应条件对NZCo-3脱硫剂脱硫性能的影响

    Figure  7  Effect of reaction conditions on the desulfurization performance of NZCo-2 desulfurization agent: reaction temperature (a), reaction pressure (b), hydrogen-oil volume ratio (c) and mass-air velocity (d)

    图  8  反应后NZ和NZCo-x脱硫剂的XRD谱图

    Figure  8  XRD spectra of NZ and NZCo-x desulfurization agent after reaction

    图  9  NZCo-3脱硫剂再生性能

    Figure  9  Plot of regeneration performance of NZCo-3 desulfurization agent

    表  1  NZ和NZCo-x脱硫剂的元素含量

    Table  1  Elemental contents of NZ and NZCo-x desulfurization agent

    Sample Ni w/% Zn w/% Co w/% n(Zn∶Co) measured value n(Zn∶Co) theoretical value
    NZ 9.550 90.45 / / /
    NZCo-1 10.66 70.95 18.39 1∶0.29 1∶0.3
    NZCo-2 10.96 58.16 30.88 1∶0.59 1∶0.6
    NZCo-3 11.15 48.14 40.71 1∶0.94 1∶1
    NZCo-4 11.18 25.16 63.66 1∶2.81 1∶3
    下载: 导出CSV

    表  2  NZ和NZCo-x脱硫剂的织构参数

    Table  2  Weaving parameters of NZ and NZCo-x desulfurization agent

    Sample BET surface area/(m2·g−1) Pore volume/(cm3·g−1) Average pore diameter/nm
    NZ 12.32 0.088 28.68
    NZCo-1 41.78 0.126 12.08
    NZCo-2 60.17 0.187 12.40
    NZCo-3 103.6 0.399 15.40
    NZCo-4 64.10 0.251 15.66
    下载: 导出CSV

    表  3  NZ和NZCo-x脱硫剂的平均粒径

    Table  3  Average particle size of NZ and NZCo-x desulfurization agent

    SampleAverage size/nm
    NZ42.23
    NZCo-115.23
    NZCo-211.76
    NZCo-37.60
    NZCo-414.67
    下载: 导出CSV
  • [1] ZAIDI Z, GUPTA Y, GAYATRI S L, et al. A comprehensive discussion on fuel combustion and desulfurization technologies[J]. Inorg Chem Commun, 2023, 110964.
    [2] TANG M M, WANG W X, ZHOU L G, et al. Reactive adsorption desulfurization of thiophene over NiMo/ZnO, a new adsorbent with high desulfurization performance and sulfur capacity at moderate temperature[J]. Catal Sci Technol,2019,9(22):6318−6326. doi: 10.1039/C9CY01070J
    [3] NIU H, LI C, LUO J, et al. Modulation of Pt states on Pt/ZnO for atmospheric ultra-deep desulfurization of dibenzothiophene and sustainable utilization[J]. Fuel,2024,357:129883. doi: 10.1016/j.fuel.2023.129883
    [4] 瞿国华. 我国清洁汽油生产的热点和难点[J]. 石油化工技术与经济,2019,35(2):1−6. doi: 10.3969/j.issn.1674-1099.2019.02.001

    ZHAI Guohua. Hot spots and difficulties in China's clean petrol production[J]. Technol. Econ. Petrochem,2019,35(2):1−6. doi: 10.3969/j.issn.1674-1099.2019.02.001
    [5] BABICH I V, MOULIJN J A. Science and technology of novel processes for deep desulfurization of oil refinery streams: a review[J]. Fuel,2003,82(6):607−631. doi: 10.1016/S0016-2361(02)00324-1
    [6] TANG M X, SI J K, XIA L C, et al. Thermodynamic evaluation and experimental validation of candidate sulfur acceptors for reactive adsorption desulfurization adsorbent[J]. Fuel,2019,257:115968. doi: 10.1016/j.fuel.2019.115968
    [7] CAMPBELL K C, HOLLIMAN P J, HOYLE R W, et al. Cobalt-zinc oxide absorbents for low temperature gas desulfurization[J]. J Mater Chem,1999,9(2):599−605. doi: 10.1039/a806909c
    [8] PETERÁWILLIAMS B. Mixed Co-Zn-Al oxides as absorbents for low-temperature gas desulfurisation[J]. J Chem Soc,1995,91(18):3219−3230.
    [9] YANG C, YANG S, FAN H L, et al. A sustainable design of ZnO-based adsorbent for robust H2S uptake and secondary utilization as hydrogenation catalyst[J]. Chem Eng J,2020,382:122892. doi: 10.1016/j.cej.2019.122892
    [10] ZHANG Y, YANG Y, HAN H, et al. Ultra-deep desulfurization via reactive adsorption on Ni/ZnO: The effect of ZnO particle size on the adsorption performance[J]. Appl Catal B-Environ,2012,119:13−19.
    [11] SINGH S B, DE M. Room temperature adsorptive removal of thiophene over zinc oxide-based adsorbents[J]. J Mater Eng Perform,2018,27:2661−2667. doi: 10.1007/s11665-018-3192-2
    [12] DHAGE P, SAMOKHVALOV A. Regenerable Fe-Mn-ZnO/SiO2 sorbents for room temperature removal of H2S from fuel reformates: performance, active sites, Operando studies[J]. Phys Chem Chem Phys.,2011,13:2179−2187. doi: 10.1039/C0CP01355B
    [13] LIU M M, MA S Y, CAI Y H, et al. ZnO/ZnCo2O4 composite prepared by one-step hydrothermal method for high-performance ethylene glycol sensor[J]. Ceram Int,2022,48(15):22346−22353.
    [14] 唐明兴, 李学宽, 吕占军, 等. 苯中硫在Ni/ZnO催化剂上加氢吸附脱除的研究[J]. 燃料化学学报,2009,37(6):707−712.

    TANG Mingxing, LI Xuekaun, LV Zhanjun, et al. Ultra-deep hydrodesulfurization of benzene over Ni/ZnO catalyst[J]. J Fuel Chem Technol,2009,37(6):707−712.
    [15] INGER M, WILK M, SARAMOK M, et al. Cobalt Spinel Catalyst for N2O Abatement in the Pilot Plant Operation-Long-Term Activity and Stability in Tail Gases[J]. Ind Eng Chem Res,2014,53:10335−10342. doi: 10.1021/ie5014579
    [16] LIU Y, TIAN J, ZHENG Y, et al. Tuning of surface structure of porous glass-supported titania with fibrous silica for efficient coupling adsorption-catalysis-resorption desulfurization scheme[J]. Surf Interfaces,2022,33:102264. doi: 10.1016/j.surfin.2022.102264
    [17] HUANG L, WANG G, QIN Z, et al. In situ XAS study on the mechanism of reactive adsorption desulfurization of oil product over Ni/ZnO[J]. Appl Catal B-Environ,2011,106(1):26−38.
    [18] WANG H, TANG M, SHI F, et al. Amorphous Cr2WO6-modified WO3 nanowires with a large specific surface area and rich Lewis acid sites: a highly efficient catalyst for oxidative desulfurization[J]. Acs Appl Mater Inter,2020,12(34):38140−38152. doi: 10.1021/acsami.0c10118
    [19] 魏延雨. Ni/ZnO反应吸附脱除汽油中硫化物的研究[D]. 天津大学, 2013.

    WEI Yanyu. Adsorptive removal of sulfides from gasoline by Ni/ZnO reaction [D]. Tianjin University, 2013.)
    [20] BAIRD T, CAMPBELL K C, HOLLIMAN P J, et al. Cobalt-zinc oxide absorbents for low temperature gas desulfurisation[J]. J Mater Chem,1999,9(2):599−605. doi: 10.1039/a806909c
    [21] WANG G, WEN Y, FAN J, et al. Reactive characteristics and adsorption heat of Ni/ZnO-SiO2-Al2O3 adsorbent by reactive adsorption desulfurization[J]. Ind Eng Chem Res,2011,50(22):12449−12459. doi: 10.1021/ie201144u
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  63
  • HTML全文浏览量:  16
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-11
  • 修回日期:  2024-05-13
  • 录用日期:  2024-05-16
  • 网络出版日期:  2024-06-04

目录

    /

    返回文章
    返回