留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Development of Nix/Mg1−x-MOF-74 for highly efficient CO2/N2 separation

ZHANG Xin LI Guoqiang HONG Mei BAN Hongyan YANG Lixia LIU Xingchen LI Feng Ekaterina Vladimirovna Matus LI Congming LI Lei

张鑫, 李国强, 红梅, 班红艳, 杨利霞, 刘星辰, 李枫, EkaterinaVladimirovna Matus, 李聪明, 李磊. 双金属Nix/Mg1−x-MOF-74材料用于高效CO2/N2分离[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60464-0
引用本文: 张鑫, 李国强, 红梅, 班红艳, 杨利霞, 刘星辰, 李枫, EkaterinaVladimirovna Matus, 李聪明, 李磊. 双金属Nix/Mg1−x-MOF-74材料用于高效CO2/N2分离[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60464-0
ZHANG Xin, LI Guoqiang, HONG Mei, BAN Hongyan, YANG Lixia, LIU Xingchen, LI Feng, Ekaterina Vladimirovna Matus, LI Congming, LI Lei. Development of Nix/Mg1−x-MOF-74 for highly efficient CO2/N2 separation[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60464-0
Citation: ZHANG Xin, LI Guoqiang, HONG Mei, BAN Hongyan, YANG Lixia, LIU Xingchen, LI Feng, Ekaterina Vladimirovna Matus, LI Congming, LI Lei. Development of Nix/Mg1−x-MOF-74 for highly efficient CO2/N2 separation[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60464-0

双金属Nix/Mg1−x-MOF-74材料用于高效CO2/N2分离

doi: 10.1016/S1872-5813(24)60464-0
详细信息
  • 中图分类号: TQ424.3

Development of Nix/Mg1−x-MOF-74 for highly efficient CO2/N2 separation

Funds: The project was supported by National Natural Science Foundation of China (U23A20100), the Strategic Priority Research Program (A) of the Chinese Academy of Sciences (XDA0390404), ICC CAS SCJC-DT-2023-03, the Foundation of State Key Laboratory of Coal Conversion (J24-25-619), Youth Innovation Promotion Association CAS (2018209,2020179), Key R & D Program of Shanxi Province (202102090301008, 202202090301013), the special fund for S&T Innovation Team of Shanxi Province (202204051001012) , Project of International Cooperation and Exchange NSFC-RFBR (22011530069); Tianjin Science and Technology Plan Project (22YFYSHZ00290).
More Information
  • 摘要: 为了提高Mg-MOF-74在CO2/N2混合气氛中对CO2气体的分离选择性,本文采用溶剂热合成法制备了系列的Mg-MOF-74和Nix/Mg1−x-MOF-74吸附剂。通过优化合成过程中的乙酸添加量,有效提高了Mg-MOF-74对CO2的吸附量。在此基础上,通过金属改性制备了双金属MOF-74吸附剂。采用多组分动态吸附穿透分析和计算模拟相结合的方法,考察了不同吸附材料对CO2/N2的选择性及其吸附亲和度。结果表明:在纯CO2和15%CO2/85%N2(vol/vol)的常温气氛下,Ni0.11/Mg0.89-MOF-74对CO2的动态吸附量和选择性分别为7.02 mmol/g和20.50,比Mg-MOF-74的吸附量和选择性提高了10.2%和18.02%。XPS、SEM和N2吸脱附等表征分析得出这归因于更稳定的不饱和金属位Ni进入Mg-MOF-74结构后对孔隙结构以及双金属之间的协同作用。DFT模拟计算结果表明,两种金属间的协同作用调变了材料的静电势强度和梯度,这对小直径、大四极矩值的CO2分子吸附更有利。此外,双金属Ni0.11/Mg0.89-MOF-74表现出良好的循环稳定性。
  • Figure  1  Effect of (a)acetic acid and (b) activation temperature on adsorption of CO2 by Mg-MOF-74

    Figure  2  XRD patterns of the MOF-74 samples(a) Mg-MOF-74,(b) Ni0.09/Mg0.91-MOF-74, (c) Ni0.11/Mg0.89-MOF-74, (d) Ni0.14/Mg0.86-MOF-74, (e) Ni0.2/Mg0.8-MOF-74,(f) Ni0.33/Mg0.67-MOF-74

    Figure  3  FT-IR spectra of synthesized MOF-74(a) Mg-MOF-74,(b) Ni0.09/Mg0.91-MOF-74, (c) Ni0.11/Mg0.89-MOF-74, (d) Ni0.14/Mg0.86-MOF-74, (e) Ni0.2/Mg0.8-MOF-74,(f) Ni0.33/Mg0.67-MOF-74

    Figure  4  SEM images of synthesized MOF-74 samples(a) Mg-MOF-74, (b) Ni0.09/Mg0.91-MOF-74, (c) Ni0.11/Mg0.89-MOF-74, (d) Ni0.14/Mg0.86-MOF-74,(e) Ni0.2/Mg0.8-MOF-74, (f) Ni0.33/Mg0.67-MOF-74

    Figure  5  EDS results for bimetallic Ni0.11/Mg0.89-MOF-74.

    Figure  6  TG curves of synthesized MOF-74

    Figure  7  XPS spectra of synthesized MOF-74.(a) survey spectra, (b) Mg 1s; (c) Ni 2p

    Figure  8  N2 adsorption and desorption curves of MOF-74 samples (left); pore size distribution curves (right)

    Figure  9  (a) Breakthrough curves of synthesized MOF-74 samples at 25 ℃ and atmospheric pressure; (b) Adsorption capacity of MOF-74 samples for CO2 and N2; (c) Adsorption selectivity of MOF-74 samples for CO2/N2; (d) Selective cycling properties of Ni0.11/Mg0.89-MOF-74

    Figure  10  (a) Mg-MOF-74 model; (b)Ni0.11/Mg0.89-MOF-74 model 1;(c) Ni0.11/Mg0.89-MOF-74 model 2; (d) Adsorption energy of MOF-74 for CO2 and N2 (yellow: Mg; cyan: Ni; red: O; blue: N; gray: C; white: H)

    Table  1  ICP test for elemental content of Nix/Mg1−x-MOF-74

    Sample Feeding molar ratio nMg/nNi Measured molar ratio nMg/nNi
    Mg-MOF-74 / /
    Ni0.09/Mg0.91-MOF-74 10 7.1
    Ni0.11/Mg0.89-MOF-74 8 5.6
    Ni0.14/Mg0.86-MOF-74 6 4.1
    Ni0.2/Mg0.8-MOF-74 4 2.7
    Ni0.33/Mg0.67-MOF-74 2 1.3
    下载: 导出CSV

    Table  2  Structural parameters of MOF-74 adsorbent samples

    Sorbents SBET/(m2·g−1) Vtotal/(cm3·g−1) Vmicro/(cm3·g−1) Average pore diameter/nm
    Mg-MOF-74 1222 0.67 0.50 2.21
    Ni0.09/Mg0.91-MOF-74 952 0.50 0.34 2.09
    Ni0.11/Mg0.89-MOF-74 1537 0.71 0.56 1.84
    Ni0.14/Mg0.86-MOF-74 1049 0.50 0.37 1.90
    Ni0.2/Mg0.8-MOF-74 1129 0.73 0.37 2.57
    Ni0.33/Mg0.67-MOF-74 955 0.82 0.19 3.42
    下载: 导出CSV

    Table  3  DFT calculation method and adsorption energy data

    Calculation method:# ωB97XD/def2SVP scf=(diis,maxcyc=918) opt
    1 eV = 96.4853 kJ·mol−1
    cleanmol (CO2)CO2_complexCO2_ad (eV)CO2_ad (kJ/mol)
    0Ni (All Mg)−8982.26−188.38−9170.66−0.46−43.96
    1Ni−10290.30−188.38−10478.69−0.37−35.44
    2Ni−11598.33−188.38−11975.12−0.37−35.91
    cleanmol (N2)N2_complexN2_ad (eV)N2_ad (kJ/mol)
    0Ni (All Mg)−8982.26−109.40−9091.67−0.34−32.94
    1Ni−10290.30−109.40−10399.71−0.23−21.86
    2Ni−11598.33−109.40−11817.15−0.22−21.11
    下载: 导出CSV
  • [1] LING J, ZHOU A, WANG W, et al. One-pot method synthesis of bimetallic MgCu-MOF-74 and Its CO2 adsorption under visible light[J]. ACS Omega,2022,7(23):19920−19929. doi: 10.1021/acsomega.2c01717
    [2] JIN M M, LI Y X, GU C, et al. Tailoring microenvironment of adsorbents to achieve excellent CO2 uptakes from wet gases[J]. AIChE Journal,2020,66(11):e16645. doi: 10.1002/aic.16645
    [3] TRICKETT C A, HELAL A, AL-MAYTHALONY B A, et al. The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion[J]. Nat Rev Mater,2017,2(8):17045. doi: 10.1038/natrevmats.2017.45
    [4] LI L, ZHAO N, WEI W, et al. A review of research progress on CO2 capture, storage, and utilization in Chinese Academy of Sciences[J]. Fuel,2013,108:112−130. doi: 10.1016/j.fuel.2011.08.022
    [5] BAI X, CHEN W, ZHAO C, et al. Exclusive formation of formic acid from CO2 electroreduction by a tunable Pd-Sn alloy[J]. Angew Chem Int Ed,2017,56(40):12219−12223. doi: 10.1002/anie.201707098
    [6] KUHL K P, HATSUKADE T, CAVE E R, et al. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces[J]. JACS,2014,136(40):14107−14113. doi: 10.1021/ja505791r
    [7] KWOK K M, CHEN L, ZENG H C. Design of hollow spherical Co@hsZSM5@metal dual-layer nanocatalysts for tandem CO2 hydrogenation to increase C2+ hydrocarbon selectivity[J]. J Mater Chem A,2020,8(25):12757−12766. doi: 10.1039/D0TA04608F
    [8] MARTíN C, FIORANI G, KLEIJ A W. Recent Advances in the Catalytic Preparation of Cyclic Organic Carbonates[J]. ACS Catal,2015,5(2):1353−1370. doi: 10.1021/cs5018997
    [9] ZHU W, MICHALSKY R, METIN Ö, et al. Monodisperse Au Nanoparticles for Selective Electrocatalytic Reduction of CO2 to CO[J]. JACS,2013,135(45):16833−16836. doi: 10.1021/ja409445p
    [10] WANG Y, BAN H, WANG Y, et al. Unraveling the role of basic sites in the hydrogenation of CO2 to formic acid over Ni-based catalysts[J]. J Catal,2024,430:115357. doi: 10.1016/j.jcat.2024.115357
    [11] LI H, WANG K, SUN Y, et al. Recent advances in gas storage and separation using metal–organic frameworks[J]. Mater Today,2018,21(2):108−121. doi: 10.1016/j.mattod.2017.07.006
    [12] WANG F, HARINDINTWALI J D, YUAN Z, et al. Technologies and perspectives for achieving carbon neutrality[J]. The Innovation,2021,2(4):100180. doi: 10.1016/j.xinn.2021.100180
    [13] LI B, WEN X, ZHAO N, et al. Preparation of high stability MgO-ZrO2 solid base and its high temperature CO2 capture properties[J]. J Fuel Chem Technol,2010,38(4):473−477.
    [14] ZHAO H, ZHAO N, MATUS E V, et al. Preparation and modulation of Cu-BTC-(n)Br/MCFs with water stability and its application for CO2 capture[J]. J Environ Chem Eng,2022,10(3):107564. doi: 10.1016/j.jece.2022.107564
    [15] DING M, FLAIG R W, JIANG H L, et al. Carbon capture and conversion using metal-organic frameworks and MOF-based materials[J]. Chem Soc Rev,2019,48(10):2783−2828. doi: 10.1039/C8CS00829A
    [16] REN J, DYOSIBA X, MUSYOKA N M, et al. Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs)[J]. Coord Chem Rev,2017,352:187−219. doi: 10.1016/j.ccr.2017.09.005
    [17] YU J, XIE L H, LI J R, et al. CO2 capture and separations using MOFs: Computational and experimental studies[J]. Chem Soc Rev,2017,117(14):9674−9754. doi: 10.1021/acs.chemrev.6b00626
    [18] PARDAKHTI M, JAFARI T, TOBIN Z, et al. Trends in solid adsorbent materials development for CO2 capture[J]. ACS Appl Mater Interfaces,2019,11(38):34533−34559. doi: 10.1021/acsami.9b08487
    [19] WEN Q, LI D, GAO C, et al. Synthesis of a Co/Ni-MOF-74@PDI Z-scheme photocatalyst as a highly efficient photo-assisted Fenton-like catalyst for the removal of chlortetracycline hydrochloride[J]. Dalton Trans,2023,52(36):12763−12778. doi: 10.1039/D3DT01987J
    [20] YAZAYDıN A Ö, SNURR R Q, PARK T-H, et al. Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach[J]. JACS,2009,131(51):18198−18199. doi: 10.1021/ja9057234
    [21] BRITT D, FURUKAWA H, WANG B, et al. Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites[J]. Proceedings of the National Academy of Sciences,2009,106(49):20637−20640. doi: 10.1073/pnas.0909718106
    [22] CASKEY S R, WONG-FOY A G, MATZGER A J. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores[J]. JACS,2008,130(33):10870−10871. doi: 10.1021/ja8036096
    [23] LOU W, YANG J, LI L, et al. Adsorption and separation of CO2 on Fe(II)-MOF-74: Effect of the open metal coordination site[J]. J Solid State Chem,2014,213:224−228. doi: 10.1016/j.jssc.2014.03.005
    [24] ROSI N L, KIM J, EDDAOUDI M, et al. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units[J]. JACS,2005,127(5):1504−1518. doi: 10.1021/ja045123o
    [25] WANG L J, DENG H, FURUKAWA H, et al. Synthesis and characterization of metal-organic framework-74 containing 2, 4, 6, 8, and 10 different metals[J]. Inorg Chem,2014,53(12):5881−5883. doi: 10.1021/ic500434a
    [26] ZHAI Q G, BU X, MAO C, et al. Systematic and dramatic tuning on gas sorption performance in heterometallic metal-organic frameworks[J]. JACS,2016,138(8):2524−2527. doi: 10.1021/jacs.5b13491
    [27] ZHANG X, LUO J, WAN K, et al. From rational design of a new bimetallic MOF family with tunable linkers to OER catalysts[J]. J Mater Chem A,2019,7(4):1616−1628. doi: 10.1039/C8TA08508K
    [28] GUO S-H, QI X-J, ZHOU H-M, et al. A bimetallic-MOF catalyst for efficient CO2 photoreduction from simulated flue gas to value-added formate[J]. J Mater Chem A,2020,8(23):11712−11718. doi: 10.1039/D0TA00205D
    [29] BOTAS J A, CALLEJA G, SáNCHEZ-SáNCHEZ M, et al. Effect of Zn/Co ratio in MOF-74 type materials containing exposed metal sites on their hydrogen adsorption behaviour and on their band gap energy[J]. Int J Hydrogen Energy,2011,36(17):10834−10844. doi: 10.1016/j.ijhydene.2011.05.187
    [30] SHI Y, CHU Q, XIONG W, et al. A new type bimetallic NiMn-MOF-74 as an efficient low-temperatures catalyst for selective catalytic reduction of NO by CO[J]. Chem Eng Process - Process Intensification,2021,159:108232. doi: 10.1016/j.cep.2020.108232
    [31] SUN H, REN D, KONG R, et al. Tuning 1-hexene/n-hexane adsorption on MOF-74 via constructing Co-Mg bimetallic frameworks[J]. Microporous Mesoporous Mater,2019,284:151−160. doi: 10.1016/j.micromeso.2019.04.031
    [32] HU J, LI L, LI H, et al. Bimetal NiCo-MOF-74 for highly selective NO capture from flue gas under ambient conditions[J]. RSC Adv,2022,12(52):33716−33724. doi: 10.1039/D2RA05974F
    [33] YUAN K, SONG T, WANG D, et al. Bimetal-organic frameworks for functionality optimization: MnFe-MOF-74 as a stable and efficient catalyst for the epoxidation of alkenes with H2O2[J]. Nanoscale,2018,10(4):1591−1597. doi: 10.1039/C7NR08882E
    [34] FURUKAWA H, CORDOVA K E, O’KEEFFE M, et al. The chemistry and applications of metal-organic frameworks[J]. Science,2013,341(6149):1230444. doi: 10.1126/science.1230444
    [35] PIANWANIT A, KRITAYAKORNUPONG C, VONGACHARIYA A, et al. The optimal binding sites of CH4 and CO2 molecules on the metal-organic framework MOF-5: ONIOM calculations[J]. Chem Phys,2008,349(1-3):77−82. doi: 10.1016/j.chemphys.2008.02.039
    [36] LIU Y, LIU J, CHANG M, et al. Theoretical studies of CO2 adsorption mechanism on linkers of metal–organic frameworks[J]. Fuel,2012,95:521−527. doi: 10.1016/j.fuel.2011.09.057
    [37] PARK J, KIM H, HAN S S, et al. Tuning metal-organic frameworks with open-metal sites and its origin for enhancing CO2 affinity by metal substitution[J]. J Phys Chem Lett,2012,3(7):826−829. doi: 10.1021/jz300047n
    [38] BAE Y-S, LIU J, WILMER C E, et al. The effect of pyridine modification of Ni–DOBDC on CO2 capture under humid conditions[J]. Chem Commun,2014,50(25):3296−3298. doi: 10.1039/C3CC44954H
    [39] ZHENG J, VEMURI R S, ESTEVEZ L, et al. Pore-engineered metal-organic frameworks with excellent adsorption of water and fluorocarbon refrigerant for cooling applications[J]. JACS,2017,139(31):10601−10604. doi: 10.1021/jacs.7b04872
    [40] LIU J, BENIN A I, FURTADO A M, et al. Stability effects on CO2 adsorption for the DOBDC series of metal-organic frameworks[J]. Langmuir,2011,27(18):11451−11456. doi: 10.1021/la201774x
    [41] JIAO Y, MORELOCK C R, BURTCH N C, et al. Tuning the kinetic water stability and adsorption interactions of Mg-MOF-74 by partial substitution with Co or Ni[J]. Ind Eng Chem Res,2015,54(49):12408−12414. doi: 10.1021/acs.iecr.5b03843
    [42] ROSNES M H, NESSE F S, OPITZ M, et al. Morphology control in modulated synthesis of metal-organic framework CPO-27[J]. Microporous Mesoporous Mater,2019,275:207−213. doi: 10.1016/j.micromeso.2018.08.027
    [43] ALBUQUERQUE G H, HERMAN G S. Chemically modulated microwave-assisted synthesis of MOF-74(Ni) and preparation of metal-organic framework-matrix based membranes for removal of metal ions from aqueous media[J]. Cryst Growth Des,2016,17(1):156−162.
    [44] GARZON-TOVAR L, CARNE-SANCHEZ A, CARBONELL C, et al. Optimised room temperature, water-based synthesis of CPO-27-M metal-organic frameworks with high space-time yields[J]. J Mater Chem A,2015,3(41):20819−20826. doi: 10.1039/C5TA04923G
    [45] LEI L, CHENG Y, CHEN C, et al. Taming structure and modulating carbon dioxide (CO2) adsorption isosteric heat of nickel-based metal organic framework (MOF-74(Ni)) for remarkable CO2 capture[J]. J Colloid Interface Sci,2022,612:132−145. doi: 10.1016/j.jcis.2021.12.163
    [46] CHENG X, ZHAO P, ZHANG M, et al. Fabrication of robust and bifunctional cyclotriphosphazene-based periodic mesoporous organosilicas for efficient CO2 adsorption and catalytic conversion[J]. Chem Eng J,2021,418:129360. doi: 10.1016/j.cej.2021.129360
    [47] PRAKASH TRIPATHY S, SUBUDHI S, DAS S, et al. Hydrolytically stable citrate capped Fe3O4@UiO-66-NH2 MOF: A hetero-structure composite with enhanced activity towards Cr (VI) adsorption and photocatalytic H2 evolution[J]. J Colloid Interface Sci,2022,606:353−366. doi: 10.1016/j.jcis.2021.08.031
    [48] ZHANG S, JANG M-S, LEE J, et al. Zeolite-like metal organic framework (zmof) with a rho topology for a CO2 cycloaddition to epoxides[J]. ACS Sustainable Chem Eng,2020,8(18):7078−7086. doi: 10.1021/acssuschemeng.0c00885
    [49] GAO Z, LIANG L, ZHANG X, et al. Facile one-pot synthesis of Zn/Mg-MOF-74 with unsaturated coordination metal centers for efficient CO2 adsorption and conversion to cyclic carbonates[J]. ACS Appl Mater Interfaces,2021,13(51):61334−61345. doi: 10.1021/acsami.1c20878
    [50] LIU J, ZHENG J, BARPAGA D, et al. A tunable bimetallic MOF-74 for adsorption chiller applications[J]. Eur J Inorg Chem,2018,2018(7):885−889.
    [51] ZHANG Y-B, FURUKAWA H, KO N, et al. Introduction of functionality, selection of topology, and enhancement of gas adsorption in multivariate metal-organic framework-177[J]. JACS,2015,137(7):2641−2650. doi: 10.1021/ja512311a
    [52] GE Y, WANG K, LI H, et al. An Mg-MOFs based multifunctional medicine for the treatment of osteoporotic pain[J]. Materials Science and Engineering: C,2021,129:112386. doi: 10.1016/j.msec.2021.112386
    [53] YAO H, SUI G, LI J, et al. Ni-MOF-74-derived ZnIn2S4/P-Ni-MOF-74 Z-scheme heterojunctions for highly efficient photocatalytic hydrogen evolution under visible light irradiation[J]. J Mol Struct,2023,1284:135398. doi: 10.1016/j.molstruc.2023.135398
    [54] LI H, GONG H, JIN Z. Phosphorus modified Ni-MOF–74/BiVO4 S-scheme heterojunction for enhanced photocatalytic hydrogen evolution[J]. Appl Catal, B,2022,307:121166. doi: 10.1016/j.apcatb.2022.121166
    [55] OSCHATZ M, ANTONIETTI M. A search for selectivity to enable CO2 capture with porous adsorbents[J]. Energy Environ Sci,2018,11(1):57−70. doi: 10.1039/C7EE02110K
    [56] SUH B L, HYUN T, KOH D-Y, et al. Rational tuning of ultramicropore dimensions in MOF-74 for size-selective separation of light hydrocarbons[J]. Chem Mater,2021,33(19):7686−7692. doi: 10.1021/acs.chemmater.1c01657
    [57] DIETZEL P D C, BESIKIOTIS V, BLOM R. Application of metal–organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide[J]. J Mater Chem,2009,19(39):7362−7370. doi: 10.1039/b911242a
    [58] ADHIKARI A K, LIN K-S. Improving CO2 adsorption capacities and CO2/N2 separation efficiencies of MOF-74(Ni, Co) by doping palladium-containing activated carbon[J]. Chem Eng J,2016,284:1348−1360. doi: 10.1016/j.cej.2015.09.086
    [59] M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al. Gaussian 09 (Gaussian, Inc. , Wallingford CT, 2009).
    [60] SAHA R, SHARMA V, DE D, et al. A (T–P) phase diagram for the adsorption/desorption of carbon dioxide and hydrogen in a Cu(II)-MOF[J]. Polyhedron,2018,153:254−260. doi: 10.1016/j.poly.2018.07.048
    [61] XU J, LIU X, LIU X, et al. Deconvolution of metal apportionment in bulk metal-organic frameworks [J]. Sci Adv, 8(44): eadd5503.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  26
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-22
  • 修回日期:  2024-05-20
  • 录用日期:  2024-05-22
  • 网络出版日期:  2024-06-19

目录

    /

    返回文章
    返回