留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核壳型Ce-OMS-2@CeO2催化剂的构建及其低温抗硫抗水SCR脱硝研究

戴歌彧 彭月旺 宇超 吕碧洪 吴孝敏 荆国华

戴歌彧, 彭月旺, 宇超, 吕碧洪, 吴孝敏, 荆国华. 核壳型Ce-OMS-2@CeO2催化剂的构建及其低温抗硫抗水SCR脱硝研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60465-2
引用本文: 戴歌彧, 彭月旺, 宇超, 吕碧洪, 吴孝敏, 荆国华. 核壳型Ce-OMS-2@CeO2催化剂的构建及其低温抗硫抗水SCR脱硝研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60465-2
DAI Geyu, PENG Yuewang, YU Chao, LÜ Bihong, WU Xiaomin, JING Guohua. Architecture of core-shell Ce-OMS-2@CeO2 catalyst and its SCR activity and SO2+H2O tolerance performance at low-temperature[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60465-2
Citation: DAI Geyu, PENG Yuewang, YU Chao, LÜ Bihong, WU Xiaomin, JING Guohua. Architecture of core-shell Ce-OMS-2@CeO2 catalyst and its SCR activity and SO2+H2O tolerance performance at low-temperature[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60465-2

核壳型Ce-OMS-2@CeO2催化剂的构建及其低温抗硫抗水SCR脱硝研究

doi: 10.1016/S1872-5813(24)60465-2
基金项目: 国家自然科学基金 (22006043)和华侨大学中青年教师科技创新计划 (ZQN-917)资助
详细信息
    通讯作者:

    Tel: 0592-6162300, E-mail: wuxiaomin@hqu.edu.cn

  • 中图分类号: O646.2

Architecture of core-shell Ce-OMS-2@CeO2 catalyst and its SCR activity and SO2+H2O tolerance performance at low-temperature

Funds: The project was supported by National Natural Science Foundation of China (22006043) and the Fundamental Research Funds for Young and Middle-aged Teachers in Science and Technology Researchthe Central Universities of Huaqiao University (ZQN-917).
  • 摘要: 本研究制备了核壳型和负载型的Ce-OMS-2复合物(Ce-OMS-2@CeO2和CeO2/Ce-OMS-2),并对其结构和性能进行了表征和测试。结果表明,核壳型Ce-OMS-2@CeO2材料由于其介孔结构的保持能够明显提升反应气体NO的传质和吸附,提升脱硝效率。同时,核壳型Ce-OMS-2@CeO2催化剂显著降低了硫酸氢铵(ABS)的分解温度,使得催化剂表面活性组分不易被ABS沉积覆盖,从而维持Ce-OMS-2@CeO2高效的抗硫抗水脱硝性能。因此,核壳型Ce-OMS-2@CeO2催化剂表现出优异的SCR脱硝性能和抗硫抗水性能(在无SO2下,100−200 ℃ NO转化率为~100%;在有SO2下,NO转化率≥~80%可维持在4 h以上)。本工作为开发高效稳定的Mn基低温SCR脱硝催化剂提供了一种有效策略。
  • 图  1  钢铁烧结行业烟气治理流程(含低温SCR装置)示意图

    Figure  1  Schematic diagram of the flue gas treatment process (including low-temperature SCR device) in steel sintering industry

    图  2  不同催化剂的转化率、生成率和选择性随反应温度的变化

    Figure  2  (a) NO conversion versus the reaction temperature for different catalysts, (b) N2O formation, (c) N2 selectivity Reaction conditions: [NO] = [NH3] = 6.0×10−4, [O2] = 5%, N2 balance, and GHSV = 170000 h−1, NO conversion in the presence of SO2 and H2O at 200 ℃, [NO] = [NH3] = 6.0×10−4, [O2] = 5%, [SO2] = 2.0×10−4, [H2O] = 10%, N2 balance, and GHSV = 170000 h−1

    图  3  Ce-OMS-2 and Ce-OMS-2@CeO2催化剂的(a)XRD谱图,(b)N2吸附-脱附等温曲线

    Figure  3  (a) XRD patterns, (b) N2 adsorption/desorption isotherms of Ce-OMS-2 and Ce-OMS-2@CeO2

    图  4  Ce-OMS-2@CeO2催化剂的(a)TEM图像,(b、c)HRTEM图像,(d1−d4)O、Mn、Ce的EDS图像,(e、f)线性扫描图像, CeO2/Ce-OMS-2催化剂的(g)TEM图像,(h)HRTEM图像,以及(i)Ce-OMS-2催化剂的TEM图像

    Figure  4  (a) TEM images, (b, c) HRTEM images, (d1−d4) the elemental mapping images of O, Mn, Ce, (e, f) Linear scanning diagram of the Ce-OMS-2@CeO2. (g) TEM images, (h) HRTEM images of the CeO2/Ce-OMS-2, (i) TEM images of Ce-OMS-2

    图  5  硫化的(a)Ce-OMS-2,(b)Ce-OMS-2@CeO2 和(c)CeO2/Ce-OMS-2催化剂的TG-DTG曲线,以及(d)ABS-沉积催化剂的TPSR曲线

    Figure  5  TG-DTG curves of the (a) sulfurized Ce-OMS-2, (b) Ce-OMS-2@CeO2. (c) CeO2/Ce-OMS-2 catalysts and(d) TPSR profiles of the ABS-deposited catalysts

    图  6  (a、b)Ce-OMS-2@CeO2,(c、d)CeO2/Ce-OMS-2催化剂吸附NO的原位红外光谱谱图

    Figure  6  In situ DRIFTS patterns of NO adsorption over (a, b) Ce-OMS-2@CeO2,(c, d) CeO2/Ce-OMS-2 catalysts

    表  1  XXX

    Table  1  A summary of the modified K-OMS-2 catalysts on the SO2 resistance

    Catalyst Reaction conditions Reaction temperature/℃ SO2 resistance Ref.
    K-OMS-2 2.0×10−4 SO2, 10% H2O,
    GHSV=170000 h−1
    200 SCR activity decline from 100% to 20% in the initial 100 min [8]
    Ce-OMS-2 2.0×10−4 SO2, 10% H2O,
    GHSV =170000 h−1
    200 SCR activity decline from 100% to 20% in the initial 200 min [8]
    Ce-K-OMS-2 1.5×10−4 SO2, 10% H2O,
    GHSV = 64000 h−1
    150 SCR activity decline from 100% to 50% in the initial 100 min [9]
    Co/K-OMS-2 2.0×10−4 SO2, GHSV =170000 h−1 200 SCR activity decline from 100% to 50% in the initial 100 min [11]
    Sb0.2-OMS-2 5.0×10−4 SO2, GHSV = 64000 h−1 150 SCR activity decline from 100% to 60% in the initial 100 min [12]
    下载: 导出CSV

    表  2  XXX

    Table  2  Textural properties for catalysts.

    Sample Specific surface areaa/(m2·g−1) Total pore volumeb/ (cm3·g−1) Pore size/nm Suface S contentc/%
    Ce-OMS-2 114.6 0.32 11.23 4.8
    CeO2/Ce-OMS-2 63.9 0.13 8.43 4.5
    Ce-OMS-2@CeO2 118.4 0.20 6.84 2.2
    a: Determined by BET method; b: Pore volume measured using the t-pot method; c: Calculated from XPS.
    下载: 导出CSV
  • [1] 单玉龙, 彭悦, 楚碧武, 等. 我国重点行业氮氧化物管控现状及减排策略[J]. 环境科学研究,2023,36(3):431−438.

    SHAN Yulong, PENG Yue, CHU Biwu, et al. Control status and emission reduction strategies of nitrogen oxides in key industries in China[J]. Res Environ Sci,2023,36(3):431−438.
    [2] 王军霞, 李曼, 敬红, 等. 我国氮氧化物排放治理状况分析及建议[J]. 环境保护,2020,48(18):24−27.

    WANG Junxia, LI Man, JING Hong, et al. Analysis and suggestions on nitrogen oxide emission control in China[J]. Environ Prot,2020,48(18):24−27.
    [3] ZHANG G, HUANG X, TANG Z. Enhancing water resistance of a Mn-based catalyst for low temperature selective catalytic reduction reaction by modifying super hydrophobic layers[J]. ACS Appl Mater Interfaces,2019,11(40):36598−36606. doi: 10.1021/acsami.9b08451
    [4] GAN L, LI K, YANG W, et al. Core-shell-like structured α-MnO2@CeO2 catalyst for selective catalytic reduction of NO: Promoted activity and SO2 tolerance[J]. Chem Eng J,2020,391:123473. doi: 10.1016/j.cej.2019.123473
    [5] DENG S, MENG T, XU B, et al. Advanced MnOx/TiO2 catalyst with preferentially exposed anatase {001} facet for low-temperature SCR of NO[J]. ACS Catal,2016,6(9):5807−5815. doi: 10.1021/acscatal.6b01121
    [6] SUN L, GAO Q, HU B, et al. Synthesis, characterization and catalytic activities of vanadium–cryptomelane manganese oxides in low-temperature NO reduction with NH3[J]. Appl Catal A Gen,2011,393(1-2):323−330. doi: 10.1016/j.apcata.2010.12.012
    [7] WU X, YU X, CHEN Z, et al. Low-valence or tetravalent cation doping of manganese oxide octahedral molecular sieve (K-OMS-2) materials for nitrogen oxide emission abatement[J]. Catal Sci Technol,2019,9(15):4108−4117. doi: 10.1039/C9CY01016E
    [8] PENG Y, WU X, HUANG Z, et al. Identifying the promotional mechanism for the activity and SO2 resistance of Ce-doped K-OMS-2 for the low-temperature SCR of NO with NH3[J]. Fuel,2023,346:128293. doi: 10.1016/j.fuel.2023.128293
    [9] WU X, YU X, HE X, et al. Insight into low-temperature catalytic NO reduction with NH3 on Ce-doped manganese oxide octahedral molecular sieves[J]. J Phys Chem C,2019,123(17):10981−10990. doi: 10.1021/acs.jpcc.9b01048
    [10] JIANG L, LIU Q, RAN G, et al. V2O5-modified Mn-Ce/AC catalyst with high SO2 tolerance for low-temperature NH3-SCR of NO[J]. Chem Eng J,2019,370:810−821. doi: 10.1016/j.cej.2019.03.225
    [11] FEDYNA M, LEGUTKO P, GRYBOS J, et al. Screening investigations into the effect of cryptomelane doping with 3d transition metal cations on the catalytic activity in soot oxidation, NO2 formation and SO2 resistance[J]. Appl Catal A Gen,2021,624:118302. doi: 10.1016/j.apcata.2021.118302
    [12] WANG Y, ZHANG C, ZHANG L, et al. Anti-sulfur selective catalytic reduction of NO x on Sb-doped OMS-2[J]. Appl Catal A Gen,2022,641:118684. doi: 10.1016/j.apcata.2022.118684
    [13] LIU J, DU Y, LIU J, et al. Design of MoFe/Beta@CeO2 catalysts with a core-shell structure and their catalytic performances for the selective catalytic reduction of NO with NH3[J]. Appl Catal B Environ,2017,203:704−714. doi: 10.1016/j.apcatb.2016.10.039
    [14] XU T, LI G, ZHU X, et al. Excellent NH3-SCR activity and significant sulfur resistance over novel core-shell Cu-SSZ-13@meso-CeO2 catalyst[J]. Fuel,2023,353:129292. doi: 10.1016/j.fuel.2023.129292
    [15] LIU S, WANG H, WEI Y, et al. Core-shell structure effect on CeO2 and TiO2 supported WO3 for the NH3-SCR process[J]. Mol Catal,2020,485:110822. doi: 10.1016/j.mcat.2020.110822
    [16] WU X, CHEN Z, YU X, et al. Mechanism by which three-dimensional ordered mesoporous CeO2 promotes the activity of VOx-MnOx/CeO2 catalysts for NO x abatement: Atomic-scale insight into the catalytic cycle[J]. Chem Eng J,2020,399(2020):125629.
    [17] NI K, PENG Y, DAI G, et al. Ceria accelerates ammonium bisulfate decomposition for improved SO2 resistance on a V2O5-WO3/TiO2 catalyst in low-temperature NH3-SCR[J]. J Taiwan Inst Chem E,2022,140:104555. doi: 10.1016/j.jtice.2022.104555
    [18] YANG J, REN S, ZHOU Z, et al. In situ IR comparative study on N2O formation pathways over different valence states manganese oxides catalysts during NH3-SCR of NO[J]. Chem. Eng. J.,2020,397:115446.
    [19] CHEN Z, GUO R, REN S, et al. Comparative analysis of the dual origins of the N2O byproduct on MnOx, FeOx, and MnFeOx sphere catalysts for a low-temperature SCR of NO with NH3[J]. J. Mater. Chem. A,2022,10:21474−21491. doi: 10.1039/D2TA06199F
    [20] GAO F, TANG X, YI H, et al. Promotional mechanisms of activity and SO2 tolerance of Co- or Ni-doped MnOx-CeO2 catalysts for SCR of NO x with NH3 at low temperature[J]. Chem Eng J,2017,317:20−31. doi: 10.1016/j.cej.2017.02.042
    [21] 张成明, 庞鑫, 王永钊. 一维隐钾锰矿型二氧化锰的控制合成及其电化学性能[J]. 化学学报,2018,76(2):133−137. doi: 10.6023/A17090418

    ZHANG Chengming, PANG Xin, WANG Yongzhao. Controllable synthesis of one-dimensional cryptomelane-type manganese dioxide and its electrochemical performance[J]. Acta Chim. Sinica,2018,76(2):133−137. doi: 10.6023/A17090418
    [22] WU X, YU X, HUANG Z, et al. MnOx-decorated VOx/CeO2 catalysts with preferentially exposed {110} facets for selective catalytic reduction of NO x by NH3[J]. Appl Catal B Environ,2019,268:118419.
    [23] SONG L, CHAO J, FANG Y, et al. Promotion of ceria for decomposition of ammonia bisulfate over V2O5-MoO3/TiO2 catalyst for selective catalytic reduction[J]. Chem Eng J,2016,303:275−281. doi: 10.1016/j.cej.2016.05.124
    [24] VASCONCELLOS C, GONCALVES M, PEREIRA M, et al. Iron doped manganese oxide octahedral molecular sieve as potential catalyst for SOx removal at FCC[J]. Appl Catal A Gen,2015,498:69−75. doi: 10.1016/j.apcata.2015.01.030
    [25] ZHU Z, NIU H, LIU Z, et al. Decomposition and reactivity of NH4HSO4 on V2O5/AC catalysts used for NO reduction with ammonia[J]. J Catal,2000,195(2):268−278. doi: 10.1006/jcat.2000.2961
    [26] LIU J, LI X, ZHAO Q, et al. Mechanistic investigation of the enhanced NH3-SCR on cobalt-decorated Ce-Ti mixed oxide: In situ FTIR analysis for structure-activity correlation[J]. Appl Catal B Environ,2017,200:297−308. doi: 10.1016/j.apcatb.2016.07.020
    [27] GAO E, PAN H, ZHANG W, et al. Insights on the mechanism of enhanced selective catalytic reduction of NO with NH3 over Zr-doped MnCr2O4: A combination of in situ DRIFTS and DFT[J]. Chem Eng J,2020,386:123956. doi: 10.1016/j.cej.2019.123956
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  24
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-20
  • 修回日期:  2024-05-04
  • 录用日期:  2024-05-06
  • 网络出版日期:  2024-06-19

目录

    /

    返回文章
    返回