留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tuning support morphology to control alloy over PtCo/γ-Al2O3 for the preferential oxidation of CO

SONG Lichuan ZHONG Liding SHEN Jia LOU Yake GUO Yun WANG Li

宋丽川, 钟栎锭, 沈佳, 娄亚珂, 郭耘, 王丽. γ-Al2O3形貌调控对PtCo合金化程度在CO-PROX反应中的影响[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60466-4
引用本文: 宋丽川, 钟栎锭, 沈佳, 娄亚珂, 郭耘, 王丽. γ-Al2O3形貌调控对PtCo合金化程度在CO-PROX反应中的影响[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60466-4
SONG Lichuan, ZHONG Liding, SHEN Jia, LOU Yake, GUO Yun, WANG Li. Tuning support morphology to control alloy over PtCo/γ-Al2O3 for the preferential oxidation of CO[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60466-4
Citation: SONG Lichuan, ZHONG Liding, SHEN Jia, LOU Yake, GUO Yun, WANG Li. Tuning support morphology to control alloy over PtCo/γ-Al2O3 for the preferential oxidation of CO[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60466-4

γ-Al2O3形貌调控对PtCo合金化程度在CO-PROX反应中的影响

doi: 10.1016/S1872-5813(24)60466-4
详细信息
  • 中图分类号: O643

Tuning support morphology to control alloy over PtCo/γ-Al2O3 for the preferential oxidation of CO

Funds: The project was supported by the National Natural Science Foundation of China (22376063, 21976057), the fund of the National Engineering Laboratory for Mobile Source Emission Control Technology (NELMS2020A05) and Fundamental Research Funds for the Central Universities.
More Information
  • 摘要: 一氧化碳的优先氧化(CO-PROX)反应是去除H2中微量CO最为有效的方法之一。负载型Pt基催化剂在CO-PROX中已有了广泛的研究,其催化性能受到载体形貌的影响。本工作通过水热法制备了不同形貌的γ-Al2O3:暴露(110)晶面的花球状γ-Al2O3(f)、暴露(100)晶面的片状γ-Al2O3(s)、以及暴露(111)晶面的棒状γ-Al2O3(r),随后负载PtCo纳米颗粒。载体的形貌及暴露晶面影响了PtCo纳米颗粒的合金化程度,随着合金化程度的增加,催化剂的活性也随之增强。PtCo/γ-Al2O3 (f)上形成了具有特定结构的Pt3Co金属间化合物,其在CO-PROX反应中表现出较高的催化活性,可在50−225 ℃的宽温度范围内实现CO完全转化,且具有优异的抗H2O和CO2性能;在γ-Al2O3(s)上仅发现PtCo部分合金化;而PtCo/γ-Al2O3(r)中Pt、Co之间没有出现合金化现象,其在50 ℃下的反应速率仅为PtCo/γ-Al2O3(f)的11%。机理认识表明形成Pt3Co金属间化合物使Pt更偏氧化态,显著削弱了Pt上CO的吸附并增加了活性氧物种,促进了CO的选择氧化。
  • Figure  1  (A)CO conversion and (B) CO2 selectivity of PtCo/γ-Al2O3 in CO-PROX reaction.

    Figure  2  (A) Arrhenius curves of PtCo/γ-Al2O3. (B) Effect of H2O, CO2, and reaction space velocity on PtCo/γ-Al2O3 (f) CO conversion rates.

    Figure  3  XRD patterns of support and catalysts.

    Figure  4  SEM and TEM images of γ-Al2O3 (f)(A1)−(A2); γ-Al2O3 (s) (B1)−(B2) and γ-Al2O3 (r) (C1)−(C2)

    Figure  5  TEM and particle size distribution statistics of PtCo/γ-Al2O3 (f)(A1)−(A2); PtCo/γ-Al2O3 (s) (B1)−(B2) and PtCo/γ-Al2O3 (r) (C1)−(C2); HRTEM image of PtCo alloy nanoparticles(D).

    Figure  6  XPS spectra of PtCo/γ-Al2O3 (f)-black, PtCo/γ-Al2O3 (s)-red, PtCo/γ-Al2O3 (r)-blue: (A) Pt 4d (B) O 1s

    Figure  7  FT-IR spectra of CO adsorption on catalysts.

    Table  1  ICP-AES and SSA date for catalysis.

    Catalyst Pt w/%a Cow/%a Co/Pt molar rationa SSAb/(m2·g−1) Percentage of Oads/%c Percentage of
    Pt0-CO (WC)%d
    PtCo/γ-Al2O3 (f) 0.88 0.083 0.31 118 27.6 41.9
    PtCo/γ-Al2O3 (s) 0.83 0.080 0.32 78 23.2 19.8
    PtCo/γ-Al2O3 (r) 0.85 0.081 0.31 323 20.7 8.9
    a: Pt and Co loading were measured by ICP; b: The SSA was obtained by N2 adsorption and desorption; c: Percentage of Oads was obtained by XPS; d: Percentage of Pt0-CO (WC) was obtained by CO adsorption.
    下载: 导出CSV
  • [1] BARNHAM K W J, MAZZER M, CLIVE B. Resolving the energy crisis: nuclear or photovoltaics?[J]. Nat Mater,2006,5(3):161−164. doi: 10.1038/nmat1604
    [2] OLABI A G. Hydrogen and fuel cell developments[J]. Int J Hydrogen Energ,2020,45(25):13563. doi: 10.1016/j.ijhydene.2020.03.132
    [3] CORNAGLIA L M, LOMBARDO E A. Pure Hydrogen Production for Low Temperature Fuel Cells[J]. Catal Lett,2018,148(4):1015−1026. doi: 10.1007/s10562-018-2309-4
    [4] MAJLAN E H, ROHENDI D, DAUD W R W, et al. Electrode for proton exchange membrane fuel cells: A review[J]. Renew Sustain Energy Rev,2018,89:117−134. doi: 10.1016/j.rser.2018.03.007
    [5] MURTHY, a M, ESAYIAN M, HOBSON A, et al. Performance of a polymer electrolyte membrane fuel cell exposed to transient CO concentrations[J]. J Electrochem Soc,2001,148(10):A1141. doi: 10.1149/1.1402119
    [6] RATTIGAN E, SUN Z, GALLO T, et al. The cobalt oxidation state in preferential CO oxidation on CoOx/Pt(111) investigated by operando X-ray photoemission spectroscopy[J]. Phy Chem Chem Phys,2022,24(16):9236−9246. doi: 10.1039/D2CP00399F
    [7] SUH D J, KWAK C, KIM J H, et al. Removal of carbon monoxide from hydrogen-rich fuels by selective low-temperature oxidation over base metal added platinum catalysts[J]. J Power Sources,2005,142(1-2):70−74. doi: 10.1016/j.jpowsour.2004.09.012
    [8] Kahlich M J, Gasteiger H A, Behm R J. Kinetics of the selective CO oxidation in H2-rich gas on Pt/Al2O3[J]. J Catal,1997,171(1):93−105. doi: 10.1006/jcat.1997.1781
    [9] WANG C H, ZHANG L, LIU Y. Aluminumphosphate molecular sieves supported Pt-Co catalysts for the preferential oxidation of CO in H2-rich gases[J]. Appl Catal B: Environ,2013,136-137:48−55. doi: 10.1016/j.apcatb.2013.02.001
    [10] PAN Y, XU L, HUANG L, et al. Identification of active sites in Pt-Co bimetallic catalysts for CO oxidation[J]. ACS Appl. Energy Mater.,2021,4(10):11151−11161. doi: 10.1021/acsaem.1c02049
    [11] FURUKAWA S, EHARA K, KOMATSU T. Unique reaction mechanism of preferential oxidation of CO over intermetallic Pt3Co catalysts: surface-OH-mediated formation of a bicarbonate intermediate[J]. Catal. Sci. Technol.,2016,6(6):1642−1650. doi: 10.1039/C5CY01652E
    [12] KOMATSU T, TAMURA A. Pt3Co and PtCu intermetallic compounds: Promising catalysts for preferential oxidation of CO in excess hydrogen[J]. J. Catal.,2008,258(2):306−314. doi: 10.1016/j.jcat.2008.06.030
    [13] ZHANG Z C, TIAN X C, ZHANG B W, et al. Engineering phase and surface composition of Pt3Co nanocatalysts: A strategy for enhancing CO tolerance[J]. Nano Energy,2017,34:224−232. doi: 10.1016/j.nanoen.2017.02.023
    [14] CAI Y F, FEI C, ZHANG C, et al. Surface pits stabilized Au catalyst for low-temperature CO oxidation[J]. Rare Met.,2022,41(9):3060−3068 doi: 10.1007/s12598-022-01999-y
    [15] FENG H, WANG H, MA Z, et al. Quantification of surface orientation effect on the thermal stability of γ-Al2O3 with different morphologies[J]. Appl. Surf. Sci.,2022,594:153509. doi: 10.1016/j.apsusc.2022.153509
    [16] KOVARIK L, GENC A, WANG C, et al. Tomography and high-resolution electron microscopy study of surfaces and porosity in a plate-like γ-Al2O3[J]. J Phys Chem C,2013,117(1):179−186. doi: 10.1021/jp306800h
    [17] ZHU J, WEI S, ZHANG L, et al. Electrical and dielectric properties of polyaniline-Al2O3 nanocomposites derived from various Al2O3 nanostructures[J]. J Mater Chem,2011,21(11):3952. doi: 10.1039/c0jm03908j
    [18] WANG Y, LIU X, MENG L, et al. Promotion of catalytic performance of Pd/Al2O3 for o-xylene oxidation by morphological control[J]. Chem Eng J,2023,472:145013. doi: 10.1016/j.cej.2023.145013
    [19] LV J, CHEN C, GUO X, et al. Crystal facet effect of γ-Al2O3 on catalytic property of CuO/γ-Al2O3 for CO oxidation[J]. Mol Catal,2023,547:113405. doi: 10.1016/j.mcat.2023.113405
    [20] MA H, WANG Y, ZHANG H, et al. Facet-induced strong metal chloride-support interaction over CuCl2/γ-Al2O3 Catalyst to enhance ethylene oxychlorination performance[J]. ACS Catal,2022,12(13):8027−8037. doi: 10.1021/acscatal.2c02019
    [21] CHEN Y, LIN J, LI L, et al. Local structure of Pt species dictates remarkable performance on Pt/Al2O3 for preferential oxidation of CO in H2[J]. Appl Catal B: Environ,2021,282:119588. doi: 10.1016/j.apcatb.2020.119588
    [22] YANG X, LI Q, LU E, et al. Taming the stability of Pd active phases through a compartmentalizing strategy toward nanostructured catalyst supports[J]. Nat Commun,2019,10(1):1611. doi: 10.1038/s41467-019-09662-4
    [23] CHEN X Y, HUH H S, LEE S W. Hydrothermal synthesis of boehmite (γ-AlOOH) nanoplatelets and nanowires: pH-controlled morphologies[J]. Nanotechnology,2007,18(28):285608. doi: 10.1088/0957-4484/18/28/285608
    [24] TANAKA K-I, SHOU M, HE H, et al. Significant enhancement of the oxidation of CO by H2 and H2O on a FeOx /Pt/TiO2 catalyst[J]. Catal Lett,2006,110(3-4):185−190. doi: 10.1007/s10562-006-0107-x
    [25] LIU M, HU A, MA Y, et al. Nitrogen-doped Pt3Co intermetallic compound nanoparticles: A durable oxygen reduction electrocatalyst[J]. J Electroanal Chem,2020,871:114267. doi: 10.1016/j.jelechem.2020.114267
    [26] LOKANATHAN M, PATIL I M, MUKHERJEE P, et al. Molten-salt synthesis of Pt3Co binary alloy nanoplates as excellent and durable electrocatalysts toward oxygen electroreduction[J]. ACS Sustain Chemy Eng,2020,8(2):986−993. doi: 10.1021/acssuschemeng.9b05650
    [27] ORAZI V, BECHTHOLD P, JASEN P V, et al. DFT study of methanol adsorption on PtCo (111)[J]. Appl. Surf. Sci.,2017,420:383−389. doi: 10.1016/j.apsusc.2017.05.159
    [28] ZHANG Z C, TIAN X C, ZHANG B W, et al. Engineering phase and surface composition of Pt3Co nanocatalysts: A strategy for enhancing CO tolerance[J]. Nano Energy,2017,34:224−232. doi: 10.1016/j.nanoen.2017.02.023
    [29] MEI Z, LI Y, FAN M, et al. Effect of the interactions between Pt species and ceria on Pt/ceria catalysts for water gas shift: The XPS studies[J]. Chem Eng J,2015,259:293−302. doi: 10.1016/j.cej.2014.07.125
    [30] CRISAFULLI R, DE BARROS V V S, RODRIGUES DE OLIVEIRA F E, et al. On the promotional effect of Cu on Pt for hydrazine electrooxidation in alkaline medium[J]. Appl Catal B: Environ,2018,236:36−44. doi: 10.1016/j.apcatb.2018.05.016
    [31] ZENG Z, GREELEY J. Characterization of oxygenated species at water/Pt (111) interfaces from DFT energetics and XPS simulations[J]. Nano Energy,2016,29:369−377. doi: 10.1016/j.nanoen.2016.05.044
    [32] MOWBRAY D J, PAZ A P, RUIZ-SORIA G, et al. Disentangling vacancy oxidation on metallicity-sorted carbon nanotubes[J]. J Phys Chem C,2016,120(32):18316−18322. doi: 10.1021/acs.jpcc.6b06163
    [33] WANG C, GU X K, YAN H, et al. Water-mediated mars-van krevelen mechanism for CO oxidation on ceria-supported single-atom Pt1 catalyst[J]. ACS Catalysis,2017,7(1):887−891. doi: 10.1021/acscatal.6b02685
    [34] PAN Y, XU L, HUANG L, et al. Identification of active sites in Pt-Co bimetallic catalysts for CO oxidation[J]. ACS Appl Energ Mater,2021,4(10):11151−11161. doi: 10.1021/acsaem.1c02049
    [35] LOU Y, ZHONG L, ZHANG C, et al. Understanding the role of K on PtCo/Al2O3 for preferential oxidation of CO in H2[J]. Int J Hydrogen Energ,2022,47(76):32503−32515. doi: 10.1016/j.ijhydene.2022.07.159
    [36] SIEMER M, TOMASCHUN G, KLÜNER T, et al. Insights into spectator-directed catalysis: CO adsorption on amine-capped platinum nanoparticles on oxide supports[J]. ACS Appl Mater Inter,2020,12(24):27765−27776. doi: 10.1021/acsami.0c06086
    [37] KALE M J, CHRISTOPHER P. Utilizing quantitative in situ FTIR spectroscopy to identify well-coordinated pt atoms as the active site for CO oxidation on Al2O3-supported Pt catalysts[J]. ACS Catal,2016,6(8):5599−5609. doi: 10.1021/acscatal.6b01128
    [38] GRACIA F J, BOLLMANN L, WOLF E E, et al. In situ FTIR, EXAFS, and activity studies of the effect of crystallite size on silica-supported Pt oxidation catalysts[J]. J Catal,2003,220(2):382−391. doi: 10.1016/S0021-9517(03)00296-3
    [39] MCCARTHY D N, STREBEL C E, JOHANSSON T P, et al. Structural modification of platinum model systems under high pressure CO annealing[J]. J Phys Chem C,2012,116(29):15353−15360. doi: 10.1021/jp302379x
    [40] LUNDWALl M J, MCCLURE S M, GOODMAN D W. Probing terrace and step sites on pt nanoparticles using CO and ethylene[J]. J Phys Chem C,2010,114(17):7904−7912. doi: 10.1021/jp9119292
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  43
  • HTML全文浏览量:  15
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-07
  • 修回日期:  2024-05-27
  • 录用日期:  2024-05-28
  • 网络出版日期:  2024-06-19

目录

    /

    返回文章
    返回