留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低钒高活性低温脱硝SCR催化剂:钒前驱体种类与表面钒浓度的影响

田茜 叶鹏 吴启龙 熊尚超 甘丽娜 陈建军

田茜, 叶鹏, 吴启龙, 熊尚超, 甘丽娜, 陈建军. 低钒高活性低温脱硝SCR催化剂:钒前驱体种类与表面钒浓度的影响[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60467-6
引用本文: 田茜, 叶鹏, 吴启龙, 熊尚超, 甘丽娜, 陈建军. 低钒高活性低温脱硝SCR催化剂:钒前驱体种类与表面钒浓度的影响[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60467-6
TIAN Qian, YE Peng, WU Qilong, XIONG Shangchao, GAN Lina, CHEN Jianjun. Low-vanadium and high-activity SCR catalyst for low-temperature denitrification: Influence of vanadium precursor and surface vanadium concentration[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60467-6
Citation: TIAN Qian, YE Peng, WU Qilong, XIONG Shangchao, GAN Lina, CHEN Jianjun. Low-vanadium and high-activity SCR catalyst for low-temperature denitrification: Influence of vanadium precursor and surface vanadium concentration[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60467-6

低钒高活性低温脱硝SCR催化剂:钒前驱体种类与表面钒浓度的影响

doi: 10.1016/S1872-5813(24)60467-6
基金项目: 国家自然科学基金 (22206130)资助
详细信息
    通讯作者:

    Tel: 021-55275979, Fax: 021-55275979, E-mail: lngan@usst.edu.cn

  • 中图分类号: X511

Low-vanadium and high-activity SCR catalyst for low-temperature denitrification: Influence of vanadium precursor and surface vanadium concentration

Funds: The project was supported by National Natural Science Foundation of China (22206130).
  • 摘要: 本研究采用固相合成法制备了一系列不同钒前驱体和不同钒负载量的V2O5/TiO2粉体催化剂。通过X射线衍射、X射线光电子能谱、氨气程序升温脱附和氢气程序升温还原等表征对催化剂的物理化学性质进行了分析,并在固定床反应器上对催化剂的脱硝活性进行了评价。以草酸氧钒(VOC2O4·xH2O)和乙酰丙酮氧钒(VO(acac)2)为钒前驱体,钒负载量为5%时,制备的粉体催化剂在200−350 ℃条件下NOx转化率稳定在100%,表现出最高的脱硝活性,相比于以偏钒酸铵(NH4VO3)和硫酸氧钒(VOSO4·xH2O)为钒前驱体制备的催化剂,其最高活性温度往低温区迁移了约150 ℃。而且以VO(acac)2作为钒前驱体制备的低钒含量(1%)催化剂的脱硝活性甚至高于以NH4VO3为钒前驱体制备的的高钒含量(6%)催化剂。结果表明,以VOC2O4和VO(acac)2为钒前驱体能有效调控催化剂上的活性位点和聚合状态,促进不同价态的V原子相互作用,形成更多的还原性V物种(V4+),从而表现出优异的SCR反应活性,同时也为制备低钒高活性的低温脱硝催化剂提供了一种有效方法。
  • 图  1  NH4VO3-V5Ti, VOSO4-V5Ti, VOC2O4-V5Ti and VO(acac)2-V5Ti催化剂性能

    Figure  1  Plots of (a) NOx conversion and (b) N2 selectivity versus temperature over the NH4VO3-V5Ti, VOSO4-V5Ti,VOC2O4-V5Ti and VO(acac)2-V5Ti catalystsReaction conditions: 5.0×10−4 NO, 5.0×10−4 NH3, 5% O2, N2 as the balance gas, and GHSV of 60000 mL/(g·h).

    图  2  商业催化剂和成型三叶草催化剂活性对比

    Figure  2  Comparison of NH4VO3-VTi, VO(acac)2-VTi three-lobed granular catalyst and commercial catalystReaction conditions: 5.0×10−4 NO, 5.0×10−4 NH3, 5% O2, N2 as the balance gas, and GHSV of 60000 mL/(g·h).

    图  3  NH4VO3-VnTi (n = 1、3、5、6)和VO(acac)2-VnTi (n = 1、3、5、6)催化剂的(a) NOx转化率和(b) 反应速率

    Figure  3  Plots of (a) NOx conversion and (b) reaction rate over NH4VO3-VnTi (n = 1, 3, 5, 6) and VO(acac)2-VnTi(n = 1, 3, 5, 6) catalystsReaction conditions: 5.0×10−4 NO, 5.0×10−4 NH3, 5% O2, N2 as the balance gas, and GHSV of 60000 mL/(g·h).

    图  4  NH4VO3-VnTi, VOSO4-VnTi, VOC2O4-VnTi and VO(acac)2-VnTi系列催化剂的XRD谱图

    Figure  4  XRD patterns of NH4VO3-VnTi, VOSO4-VnTi, VOC2O4-VnTi and VO(acac)2-VnTi series catalysts

    (a): n=1%; (b): n=3%; (c): n=5%.

    图  5  NH4VO3-V5Ti、VOSO4-V5Ti、VOC2O4-V5Ti和VO(acac)2-V5Ti催化剂的Raman谱图

    Figure  5  Raman spectra of the NH4VO3-V5Ti, VOSO4-V5Ti, VOC2O4-V5Ti and VO(acac)2-V5Ti catalysts

    (a): Full spectrum in the range 200−1300 cm−1; (b): The enlarged part in the range 700−1200 cm−1.

    图  6  (a) NH4VO3-VnTi, (b) VOSO4-VnTi, (c) VOC2O4-VnTi and (d) VO(acac)2-VnTi catalysts (n=1、3、5)的XPS谱图(V 2p

    Figure  6  XPS spectra of V 2p for (a) NH4VO3-VnTi, (b) VOSO4-VnTi, (c) VOC2O4-VnTi and (d) VO(acac)2-VnTi catalysts (n=1, 3, 5)

    图  7  催化剂的(a) H2-TPR谱图(b) 初始耗氢率图

    Figure  7  (a) H2-TPR profiles and (b) H2 consumption rate profiles of the catalysts

    图  8  催化剂的NH3-TPD谱图

    Figure  8  NH3-TPD profiles of the catalysts

    图  9  催化剂的阿伦尼乌斯拟合曲线

    Figure  9  Arrhenius plots of catalysts

    表  1  催化剂表面元素含量

    Table  1  Surface element ratios of the catalysts

    Catalyst ICPa XPSb
    V2O5 w/% V/Ti/% V4+/V/%
    NH4VO3-V5Ti 5.05 2.48 15.89
    VOSO4-V5Ti 5.01 4.69 13.63
    VOC2O4-V5Ti 5.07 12.96 21.43
    VO(acac)2-V5Ti 4.99 10.88 18.92
    a: Mass percent from ICP; b: Surface atomic ratio from XPS.
    下载: 导出CSV

    表  2  系列催化剂的表观活化能和指前因子

    Table  2  The apparent activation energy and pre-exponential factor of the catalysts

    Catalyst Ea/(kJ·mol−1) Pre-exponential factor
    NH4VO3-V5Ti 69.96 1.28×108
    VOSO4-V5Ti 66.13 3.11×107
    VOC2O4-V5Ti 73.23 1.11×1010
    VO(acac)2-V1Ti 54.84 5.43×106
    VO(acac)2-V3Ti 66.12 7.60×108
    VO(acac)2-V5Ti 78.84 4.63×1010
    下载: 导出CSV
  • [1] LI J, HE H, HU C, et al. The abatement of major pollutants in air and water by environmental catalysis[J]. Front Env Sci Eng,2013,7(3):302−325. doi: 10.1007/s11783-013-0511-6
    [2] WANG J, ZHAO H, HALLER G, et al. Recent advances in the selective catalytic reduction of NOx with NH3 on Cu-Chabazite catalysts[J]. Appl Catal B: Environ,2017,202:346−354. doi: 10.1016/j.apcatb.2016.09.024
    [3] ZHANG Q, WU Y, YUAN H. Recycling strategies of spent V2O5-WO3/TiO2 catalyst: A review[J]. Resour. Conserv. Recy,2020,161:104983. doi: 10.1016/j.resconrec.2020.104983
    [4] ZHAO L, LI C, LI S, et al. Simultaneous removal of elemental mercury and NO in simulated flue gas over V2O5/ZrO2-CeO2 catalyst[J]. Appl Catal B: Environ,2016,198:420−430. doi: 10.1016/j.apcatb.2016.05.079
    [5] XIONG S, CHEN J, LIU H, et al. Like cures like: detoxification effect between alkali metals and sulfur over the V2O5/TiO2 deNO x catalyst[J]. Environ Sci Technol,2022,56(6):3739−3747. doi: 10.1021/acs.est.2c00113
    [6] XU J, CHEN G, GUO F, et al. Development of wide-temperature vanadium-based catalysts for selective catalytic reducing of NOx with ammonia: Review[J]. Chem Eng J,2018,353:507−518. doi: 10.1016/j.cej.2018.05.047
    [7] GUO K, JI J, SONG W, et al. Conquering ammonium bisulfate poison over low-temperature NH3-SCR catalysts: A critical review[J]. Appl Catal B,2021,297:120388. doi: 10.1016/j.apcatb.2021.120388
    [8] ZHAO X, HUANG L, LI H, et al. Highly dispersed V2O5/TiO2 modified with transition metals (Cu, Fe, Mn, Co) as efficient catalysts for the selective reduction of NO with NH3[J]. Chinese J Catal,2015,36(11):1886−1899. doi: 10.1016/S1872-2067(15)60958-5
    [9] GUO M, MOSEVITZKY LIS B, FORD M E, et al. The effect of non-redox promoters (AlOx, POx, SiOx and ZrOx) and surface sulfates on supported V2O5-WO3/TiO2 catalysts in selective catalytic reduction of NO with NH3[J]. Appl Catal B: Environ,2022,306:121128. doi: 10.1016/j.apcatb.2022.121128
    [10] GUO M, MOSEVITZKY LIS B, FORD M E, et al. Effect of redox promoters (CeOx and CuOx) and surface sulfates on the selective catalytic reduction (SCR) of NO with NH3 by supported V2O5-WO3/TiO2 catalysts[J]. Appl Catal B: Environ,2022,306:121108. doi: 10.1016/j.apcatb.2022.121108
    [11] JUNG Y J, CHA J S, KIM B S. Characteristics of deactivation and thermal regeneration of Nb-doped V2O5–WO3/TiO2 catalyst for NH3-SCR reaction[J]. Environ Res,2023,227:115744. doi: 10.1016/j.envres.2023.115744
    [12] REN Z, LI A, LEI X, et al. Enhancement effect of RuO2 doping on the reduction process of NOx by NH3 via V2O5-WO3/TiO2 particle catalyst under low-temperature: Structure-activity relationship and reaction mechanism[J]. Appl Surf Sci,2023,625:157160. doi: 10.1016/j.apsusc.2023.157160
    [13] ZHAO X, YAN Y, MAO L, et al. A relationship between the V4+/V5+ ratio and the surface dispersion, surface acidity, and redox performance of V2O5-WO3/TiO2 SCR catalysts[J]. RSC Adv,2018,8(54):31081−31093. doi: 10.1039/C8RA02857E
    [14] WENT G T, LEU L J, ROSIN R R, et al. The effects of structure on the catalytic activity and selectivity of V2O5/TiO2 for the reduction of NO by NH3[J]. J Catal,1992,134:492−505. doi: 10.1016/0021-9517(92)90337-H
    [15] JIA Z, SHEN Y, YAN T, et al. Efficient NO x abatement over alkali-resistant catalysts via constructing durable dimeric VO x species[J]. Environ Sci Technol,2022,56(4):2647−2655. doi: 10.1021/acs.est.1c06932
    [16] HE G, LIAN Z, YU Y, et al. Polymeric vanadyl species determine the low-temperature activity of V-based catalysts for the SCR of NO x with NH3[J]. Sci Adv,2018,4(11):eaau4637. doi: 10.1126/sciadv.aau4637
    [17] LIAN Z, WEI J, SHAN W, et al. Adsorption-induced active vanadium species facilitate excellent performance in low-temperature catalytic NO x abatement[J]. J Am Chem Soc,2021,143(27):10454−10461. doi: 10.1021/jacs.1c05354
    [18] GAN L, CHEN J, PENG Y, et al. NO x removal over V2O5/WO3–TiO2 prepared by a grinding method: influence of the precursor on vanadium dispersion[J]. Ind Eng Chem Res,2018,57(1):150−157. doi: 10.1021/acs.iecr.7b04060
    [19] GAN L, LI K, NIU H, et al. Simultaneous removal of NOx and chlorobenzene on V2O5/TiO2 granular catalyst: Kinetic study and performance prediction[J]. Front Environ Sci Eng,2021,15(4):70. doi: 10.1007/s11783-020-1363-5
    [20] CHA W, CHIN S, PARK E, et al. Effect of V2O5 loading of V2O5/TiO2 catalysts prepared via CVC and impregnation methods on NOx removal[J]. Appl Catal B: Environ,2013,140-141:708−715. doi: 10.1016/j.apcatb.2013.05.002
    [21] WACHS I E, ROBERTS C A. Monitoring surface metal oxide catalytic active sites with Raman spectroscopy[J]. Chem Soc Rev,2010,39(12):5002. doi: 10.1039/c0cs00145g
    [22] WENT G T, OYAMA S Ted, BELL A T. Laser Raman spectroscopy of supported vanadium oxide catalysts[J]. J. Phys. Chem,1990,94(10):4240−4246. doi: 10.1021/j100373a067
    [23] KHODAKOV A, OLTHOF B, BELL A T, et al. Structure and catalytic properties of supported vanadium oxides: support effects on oxidative dehydrogenation reactions[J]. J Catal,1999,181(2):205−216. doi: 10.1006/jcat.1998.2295
    [24] GIAKOUMELOU I, FOUNTZOULA C, KORDULIS C, et al. Molecular structure and catalytic activity of V2O5/TiO2 catalysts for the SCR of NO by NH3: In situ Raman spectra in the presence of O2, NH3, NO, H2, H2O, and SO2[J]. J Catal,2006,239(1):1−12. doi: 10.1016/j.jcat.2006.01.019
    [25] LAI J K, WACHS I E. A perspective on the selective catalytic reduction (SCR) of NO with NH3 by supported V2O5–WO3/TiO2 catalysts[J]. ACS Catal,2018,8(7):6537−6551. doi: 10.1021/acscatal.8b01357
    [26] SAWATZKY G A, POST D. X-ray photoelectron and Auger spectroscopy study of some vanadium oxides[J]. Phys Rev B,1979,20(4):1546−1555. doi: 10.1103/PhysRevB.20.1546
    [27] HE S, ZHOU J, ZHU Y, et al. Mercury oxidation over a vanadia-based selective catalytic reduction catalyst[J]. Energy Fuels,2009,23(1):253−259. doi: 10.1021/ef800730f
    [28] LI C, BREWE D, LEE J Y. Effects of impregnation sequence for Mo-modified V-based SCR catalyst on simultaneous Hg (0) oxidation and NO reduction[J]. Appl Catal B: Environ,2020,270:118854. doi: 10.1016/j.apcatb.2020.118854
    [29] ZHAO W, ZHANG K, WU L, et al. Ti3+ doped V2O5/TiO2 catalyst for efficient selective catalytic reduction of NOx with NH3[J]. J Colloid Interf Sci,2021,581:76−83. doi: 10.1016/j.jcis.2020.07.131
    [30] BROCLAWIK E, GÓRA A, NAJBAR M. The role of tungsten in formation of active sites for no SCR on the V-W-O catalyst surface — quantum chemical modeling (DFT)[J]. J Mol Catal A-chem,2001,166(1):31−38. doi: 10.1016/S1381-1169(00)00462-3
    [31] KOMPIO P G W A, BRÜCKNER A, HIPLER F, et al. A new view on the relations between tungsten and vanadium in V2O5WO3/TiO2 catalysts for the selective reduction of NO with NH3[J]. J Catal,2012,286:237−247. doi: 10.1016/j.jcat.2011.11.008
    [32] YU W, WU X, SI Z, et al. Influences of impregnation procedure on the SCR activity and alkali resistance of V2O5-WO3/TiO2 catalyst[J]. Appl Surf Sci,2013,283:209−214. doi: 10.1016/j.apsusc.2013.06.083
    [33] JIANG S, LUO B, LI K, et al. Promoter not inhibitor: The antidotal effects of arsenic on lead-poisoning V2O5-WO3/TiO2 catalyst for selective catalytic reduction of NO with NH3[J]. J Clean Prod,2023,397:136621. doi: 10.1016/j.jclepro.2023.136621
    [34] ZHANG W, SHI X, YAN Z, et al. Design of high-performance Iron–Niobium composite oxide catalysts for NH3-SCR: Insights into the interaction between Fe and Nb[J]. ACS Catal,2021,11(15):9825−9836. doi: 10.1021/acscatal.1c01619
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  44
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-16
  • 修回日期:  2024-05-29
  • 录用日期:  2024-06-03
  • 网络出版日期:  2024-06-19

目录

    /

    返回文章
    返回