留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Enhancing photo-generated carriers transfer of K-C3N4/UiO-66-NH2 with Er doping for efficient photocatalytic oxidation of furfural to furoic acid

WANG Haocun LIU Lingtao BIAN Junjie LI Chunhu

王浩存, 刘令涛, 卞俊杰, 李春虎. Er掺杂增强K-C3N4/UiO-66-NH2的光生载流子转移用于糠醛高效光催化氧化制糠酸[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60469-X
引用本文: 王浩存, 刘令涛, 卞俊杰, 李春虎. Er掺杂增强K-C3N4/UiO-66-NH2的光生载流子转移用于糠醛高效光催化氧化制糠酸[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60469-X
WANG Haocun, LIU Lingtao, BIAN Junjie, LI Chunhu. Enhancing photo-generated carriers transfer of K-C3N4/UiO-66-NH2 with Er doping for efficient photocatalytic oxidation of furfural to furoic acid[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60469-X
Citation: WANG Haocun, LIU Lingtao, BIAN Junjie, LI Chunhu. Enhancing photo-generated carriers transfer of K-C3N4/UiO-66-NH2 with Er doping for efficient photocatalytic oxidation of furfural to furoic acid[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60469-X

Er掺杂增强K-C3N4/UiO-66-NH2的光生载流子转移用于糠醛高效光催化氧化制糠酸

doi: 10.1016/S1872-5813(24)60469-X
详细信息
  • 中图分类号: TK6

Enhancing photo-generated carriers transfer of K-C3N4/UiO-66-NH2 with Er doping for efficient photocatalytic oxidation of furfural to furoic acid

Funds: The project was supported by Natural Science Foundation of Shandong Province ( ZR2021MB104). National Natural Science Foundation of China (No. 22078174).
More Information
  • 摘要: 生物质衍生的平台分子如糠醛是一种丰富、可再生的化工原料,可被转化为高值化学品。在糠醛转化为高值化学品的过程中,制备可见光响应的高效选择氧化光催化剂至关重要。本研究采用直接水热法合成了Er@K-C3N4/UiO-66-NH2催化剂,在糠醛光催化氧化制备糠酸的反应中表现出优异的催化活性。对催化剂进行了充分的表征,证实Er@K-C3N4/UiO-66-NH2催化剂的带隙被有效调控。反应条件优化后,糠醛的转化率达到89.3%,相应的糠酸产率为79.8%。ESR测试和活性氧物种捕获实验的结果表明:反应过程中的主要活性氧物种为·O2 。Er和K的掺杂提高了催化剂的光生载流子转移速率,从而提高了光生电子-空穴对的分离效率。本研究拓展了稀土元素掺杂g-C3N4在糠醛光催化选择性氧化中的潜在应用。
  • Figure  1  FT-IR spectra of (a) CN and xECN, (b) UiO-66-NH2、CNUN, and xECNUN, (c) XRD patterns of 2ECN、UiO-66-NH2, and 2ECNUN (d) Illustration depicting the structural arrangement of a catalyst

    Figure  2  SEM images of (a)−(c) UiO-66-NH2, (d)−(f) 2ECNUN and (g)−(l) element mapping images of 2ECNUN

    Figure  3  (a) Full-scan XPS spectra and High-resolution XPS spectra of (b) C 1s, (c) N 1s, (d) O 3d.

    Figure  4  UV-Vis diffuse reflectance spectra of samples and Mott-Schottky plot of the samples (a) UV-vis DRS (b) plots of (αhv)1/2 vs energy (hv). (c) Mott-Schottky plot of the samples schematic (d) diagram of energy band structure

    Figure  5  (a) Steady-state fluorescence spectrogram (b) Photocurrent curve and time-resolved spectrogram (c) EIS Nyquist plots

    Figure  6  Optimization of reaction conditions for the catalytic oxidation of furfural to prepare furoic acid (a) Different catalysts (b) Temperature (c) Water system (d) 0.1 mM Na2CO3 system

    Figure  7  (a) Evaluation of the photocatalytic performance of 2ECNUN in cycling tests and (b) FT-IR spectra of2ECNUN before and after the reaction.

    Figure  8  (a) Scavenger experiments, ESR spectra of radical species trapped by DMPO over 2ECNUN under different conditions (dark and visible light irradiation) (b) DMPO-·O2 in methanol

    Figure  9  The mechanism of furfural photocatalytic oxidation on 2ECNUN.

    Table  1  Summary of furan selective conversion in recent publications

    Catalyst Phase Reactant Catalytic method Yield(%) Ref
    NaOH/H2O2 Homogeneous Furfural Thermal catalysis Furoic acid,99 [8]
    OA/ChCl Homogeneous Furfural Thermal catalysis MA+FA,96 [21]
    KBr/KOH Homogeneous Furfural Thermal catalysis MA,72 [22]
    AuPd/Mg(OH)2 Heterogeneous Furfural Thermal catalysis Furoic acid,89 [20]
    Ru/C Heterogeneous Furfural Thermal catalysis Furoic acid,83 [23]
    Au/TiO2 Heterogeneous Furfural Thermal catalysis Furoic acid,36 [17]
    Ti3C2Tx/CdS Heterogeneous Furfural Photocatalysis Furoic acid [26]
    CuOx/ Nb2O5 Heterogeneous Furfural Photocatalysis MA,HF,59 [28]
    CV/C3N4 Heterogeneous HMF Photocatalysis DFF,95 [30]
    Nb2O5 Heterogeneous HMF Photocatalysis DFF,91 [27]
    Co-N-C Heterogeneous HMF Thermal catalysis FDCA,94 [31]
    Co3O4@CoBTC Heterogeneous HMF Thermal catalysis HMFCA,72 [33]
    xCo-yNi@NC Heterogeneous FFA Thermal catalysis FAL,57 [32]
    Pt/ZIS/MnO2 Heterogeneous HMF Photothermal catalysis DFF,55
    FDCA,62
    [25]
    下载: 导出CSV
  • [1] LV S, LIU H, ZHANG J, et al. Water promoted photocatalytic transfer hydrogenation of furfural to furfural alcohol over ultralow loading metal supported on TiO2[J]. J Energy Chem,2022,73:259−267. doi: 10.1016/j.jechem.2022.06.012
    [2] PAN Y, ZHANG H, Zhang B, et al. Renewable formate from sunlight, biomass and carbon dioxide in a photoelectrochemical Cell[J]. Nat. Commun,2023,14(1):1013. doi: 10.1038/s41467-023-36726-3
    [3] LI X, JIA P, WANG T. Furfural: A Promising Platform Compound for Sustainable Production of C4 and C5 Chemicals[J]. ACS Catal,2016,6(11):7621−7640. doi: 10.1021/acscatal.6b01838
    [4] BALU S, CHUAICHAM C, BALAKUMAR V, et al. Recent development on Core-shell photo(electro)catalysts for elimination of organic compounds from pharmaceutical Wastewater[J]. Chemosphere,2022,298:134311. doi: 10.1016/j.chemosphere.2022.134311
    [5] YU X, HUANG X, JIA W, et al. Insight into the catalytic mechanism of N-doped carbon nanotubes supported CoNi bimetallic catalyst boosts the base-free oxidative esterification of furfural[J]. Mol Catal,2023,546:113197. doi: 10.1016/j.mcat.2023.113197
    [6] BECERRA M L, PRIETO G A, RENDUELES M, et al. Biological transformations of furanic platform molecules to obtain Biomass-derived furans: A Review[J]. Biomass Convers Bior, 2022.
    [7] GHATTA A A, PERRY J M, MAENG H, et al. Sustainable and efficient production of furoic acid from furfural through amine assisted oxidation with hydrogen peroxide and its implementation for the synthesis of alkyl Furoate[J]. RSC Sustain,2023,1(2):303−309. doi: 10.1039/D2SU00102K
    [8] ZHANG X, XU S, LI Q, et al. Recent advances in the conversion of furfural into Bio-chemicals through chemo- and bio-Catalysis[J]. RSC Adv,2021,11(43):27042−27058. doi: 10.1039/D1RA04633K
    [9] LEE E, KIM J H, CHOI J, et al. Electrochemical biomass valorization of furfural to maleic acid by modulating selectivity with Bi-doped lead Oxide[J]. J Mater Chem A,2023,11(31):16559−16569. doi: 10.1039/D3TA00114H
    [10] KANG S, TANG P, FU J, et al. Sustainable production of organic acids via ozonation of biomass derived 5-hydroxymethylfurfural and Furfural[J]. Sustain Chem Pharm,2021,20:100383. doi: 10.1016/j.scp.2021.100383
    [11] ZHU Q, ZHUANG Y, ZHAO H, et al. 2, 5-Diformylfuran production by photocatalytic selective oxidation of 5-hydroxymethylfurfural in water using MoS2/CdIn2S4 flower-like heterojunctions[J]. Chin J Chem Eng,2023,54:180−191. doi: 10.1016/j.cjche.2022.04.018
    [12] HU S-L, CHENG H, XU R-Y, et al. Conversion of xylose into furfural over Cr/Mg hydrotalcite Catalysts[J]. Mol Catal,2023,538:113009. doi: 10.1016/j.mcat.2023.113009
    [13] GAO J, WANG H, CAO X, et al. Nitrogen doped carbon solid acid for improving its catalytic transformation of xylose and agricultural biomass residues to furfural[J]. Mol Catal,2023,535:112890. doi: 10.1016/j.mcat.2022.112890
    [14] LI W, ZHU Y, LU Y, et al. Enhanced furfural production from raw corn stover employing a novel heterogeneous acid Catalyst[J]. Bioresour Technol,2017,245:258−265. doi: 10.1016/j.biortech.2017.08.077
    [15] ZOU S-M, WANG J-P, ZONG M-H, et al. One-pot photoenzymatic synthesis of maleic acid and its derivatives from bio-based furfural via catalytic Cascades[J]. Green Chem,2023,25(17):6892−6900. doi: 10.1039/D3GC01882B
    [16] RAPADO P, FABA L, ORDONEZ S. Selective and stable production of furoic acid by furfural aerobic oxidation at controlled mild-pH conditions[J]. Appl Catal A: Gen,2024,670:119536. doi: 10.1016/j.apcata.2023.119536
    [17] PENG Z, LI S, LI R, et al. A dynamic structure evolution and reaction pathway over Ni2P for enhancement toward furfural oxidation[J]. Appl Catal B: Environ,2024,342:123450. doi: 10.1016/j.apcatb.2023.123450
    [18] PAPANIKOLAOU G, LANZAFAME P, PERATHONER S, et al. High performance of Au/ZTC based catalysts for the selective oxidation of bio-derivative furfural to 2-furoic acid1[J]. Catal Commun,2021,149:106234. doi: 10.1016/j.catcom.2020.106234
    [19] DOUTHWAITE M, HUANG X, IQBAL S, et al. The controlled catalytic oxidation of furfural to furoic acid using AuPd/Mg(OH)2[J]. Catal Sci Technol,2017,7(22):5284−5293. doi: 10.1039/C7CY01025G
    [20] NI Y, BI Z, SU H, et al. Deep eutectic solvent (DES) as both solvent and catalyst for oxidation of furfural to maleic acid and fumaric Acid[J]. Green Chem,2019,21(5):1075−1079. doi: 10.1039/C8GC04022B
    [21] YANG T, LI W, OGUNBIYI A T. The effect of Br and alkali in enhancing the oxidation of furfural to maleic acid with hydrogen Peroxide[J]. Mol Catal,2021,504:111488. doi: 10.1016/j.mcat.2021.111488
    [22] LOKHANDE P, DHEPE P L. Selective and robust Ru catalyst for the aqueous phase aerobic oxidation of furfural to 2-furoic acid[J]. ACS Appl Mater Inter,2023,15(40):47004−47015. doi: 10.1021/acsami.3c09965
    [23] LUO N, MONTINI T, ZHANG J, et al. Visible-light-driven coproduction of diesel precursors and hydrogen from lignocellulose-derived methylfurans[J]. Nat Energy,2019,4(7):575−584. doi: 10.1038/s41560-019-0403-5
    [24] YANG Z, XIA X, FANG M, et al. Photothermal effect act as controllable switch for tunable photocatalytic selective oxidation of 5-Hydroxymethylfurfural[J]. Chem Eng J,2023,476:146544. doi: 10.1016/j.cej.2023.146544
    [25] WANG J, LIU X, LI Z. Acceptorless photocatalytic dehydrogenation of furfuryl alcohol (FOL) to furfural (FAL) and furoic acid (FA) over Ti3C2Tx/CdS under visible light[J]. Chem Asian J,2021,16(19):2932−2938. doi: 10.1002/asia.202100729
    [26] ZHANG H, WU Q, GUO C, et al. Photocatalytic selective oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran over Nb2O5 under visible light[J]. ACS Sustainable Chem Eng,2017,5(4):3517−3523. doi: 10.1021/acssuschemeng.7b00231
    [27] REN P, ZHOU Y, SU K, et al. Visible-light-driven furfural oxidation over CuOx/Nb2O5[J]. Chem Asian J,2023,18(22):e202300732. doi: 10.1002/asia.202300732
    [28] CUI J, LU X, GUO M, et al. Construction of a g-C3N4-driven photocatalytic system for boosted biomass-derived alcohol oxidation: a promising route towards sustainable biomass valorization[J]. Catal Sci Technol,2023,13(4):940−957. doi: 10.1039/D2CY01860H
    [29] CHEN C-C, TSAI D-L, LIU H-T, et al. Carbon vacancy-modified carbon nitride allotropic vomposite for solar hydrogen generation coupled with selective oxidation of 5-hydroxymethylfurfural[J]. ACS Sustainable Chem Eng,2023,11(16):6435−6444. doi: 10.1021/acssuschemeng.3c00363
    [30] LIU X, MA H, ZHANG M, et al. Catalytic activation of molecular oxygen toward producing hydroxyl radicals controllably for highly selective oxidation of hydroxyl compounds under mild conditions[J]. ACS Catal,2023,13(16):11104−11116. doi: 10.1021/acscatal.3c02736
    [31] HUANG L, HAO F, LV Y, et al. MOF-derived well-structured bimetallic catalyst for highly selective conversion of furfural[J]. Fuel,2021,289:119910. doi: 10.1016/j.fuel.2020.119910
    [32] BORDEIASU M, EJSMONT A, GOSCIANA J, et al. Catalytic oxidation of biomass-derived 5-hydroxymethylfurfural to 5-hydroxymethyl-2-furancarboxylic acid by Co-based MOFs[J]. Appl Catal A: Gen,2023,657:119147. doi: 10.1016/j.apcata.2023.119147
    [33] WAMG Y, ZHANG Y, ZHAO S, et al. Bio-template synthesis of Mo-doped polymer carbon nitride for photocatalytic hydrogen evolution[J]. Appl Catal B: Environ,2019,248:44−53. doi: 10.1016/j.apcatb.2019.02.007
    [34] QI F, LI Y, WANG Y, et al. Ag-Doped g-C3N4 film electrode: Fabrication, characterization and photoelectrocatalysis property[J]. RSC Adv,2016,6(84):81378−81385. doi: 10.1039/C6RA17613E
    [35] LIANG Q, CUI S, LIU C, et al. Construction of CdS@UIO-66-NH2 core-shell nanorods for enhanced photocatalytic activity with excellent photostability[J]. J Colloid and Interface Sci,2018,524:379−387. doi: 10.1016/j.jcis.2018.03.114
    [36] LEI Y, ZHU L, XU J, et al. The metal organic framework of UiO-66-NH2 reinforced nanofiltration membrane for highly efficient ion sieving[J]. J. Environ,2023,11(6):111222.
    [37] JI S, QU Y, WANG T, et al. Rare-Earth Single Erbium atoms for enhanced photocatalytic CO2 reduction[J]. Angew Chem Int Edit,2020,59(26):10651−10657. doi: 10.1002/anie.202003623
    [38] WANG J, QIN J, YANG C, et al. Effect of ligand substitution in UiO-66 metal-organic frameworks on the photocatalytic oxidation of Acetaldehyde[J]. Chemosphere,2023,340:139841. doi: 10.1016/j.chemosphere.2023.139841
    [39] PENAS-GARZÓN M, SAMPAIO M J, WANG Y L, et al. Solar photocatalytic degradation of parabens using UiO-66-NH2[J]. Sep Purif Technol,2022,286:120467. doi: 10.1016/j.seppur.2022.120467
    [40] NASALEVICH M A, HENDON C H, SANTACLARA J G, et al. Electronic origins of photocatalytic activity in d0 metal organic frameworks[J]. Sci Rep,2016,6(1):23676. doi: 10.1038/srep23676
    [41] JIN X, WANG H, LV X, et al. K–N Bridge-Mediated charge separation in hollow g-C3N4 frameworks: A bifunctional photocatalysts towards efficient H2 and H2O2 production[J]. J Colloid and Interface Sci,2023,652:1545−1553. doi: 10.1016/j.jcis.2023.08.181
    [42] HU Y, QU Y, ZHOU Y, et al. Single Pt atom-anchored C3N4: A bridging Pt-N bond boosted electron transfer for highly efficient photocatalytic H2 generation[J]. Chem Eng J,2021,412:128749. doi: 10.1016/j.cej.2021.128749
    [43] LIU L, WANG L, TAN J, et al. Tunable Kx-C3N4/ UiO-66-NH2 photocatalyst for selective oxidation of furfural to furoic acid with mediation of Na2CO3[J]. J Photoch Photobio A, 2024: 115484.
    [44] JIN R, HU S, GUI J, et al. A convenient method to prepare novel rare earth metal Ce-doped carbon nitride with enhanced photocatalytic activity under visible light[J]. Bull Korean Chem Soc,2015,36(1):17−23. doi: 10.1002/bkcs.10001
    [45] JIANG B, ZHU S, WANG W, et al. Room-temperature continuous-wave upconversion white microlaser using a rare-earth-doped microcavity[J]. ACS Photonics,2022,9(9):2956−2962. doi: 10.1021/acsphotonics.2c00379
    [46] MALIBO P M, MAKGWANE P R, BAKER P G L. Hetero-mixed TiO2-SnO2 interfaced nano-oxide catalyst with enhanced activity for selective oxidation of furfural to maleic Acid[J]. Inorg Chem Commun,2021,129:108637. doi: 10.1016/j.inoche.2021.108637
    [47] ZHOU B, SONG J, ZHANG Z, et al. Highly selective photocatalytic oxidation of biomass-derived chemicals to carboxyl compounds over Au/TiO2[J]. Green Chem,2017,19(4):1075−1081. doi: 10.1039/C6GC03022J
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  15
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-12
  • 修回日期:  2024-04-22
  • 录用日期:  2024-05-20
  • 网络出版日期:  2024-07-04

目录

    /

    返回文章
    返回