杨妍, 葛陶晨曦, 姜雅楠, 张弦, 刘源. 大孔氧化铝表面原位生长镍基催化剂用于二氧化碳甲烷化[J]. 燃料化学学报(中英文). DOI: 10.1016/S1872-5813(24)60470-6
引用本文: 杨妍, 葛陶晨曦, 姜雅楠, 张弦, 刘源. 大孔氧化铝表面原位生长镍基催化剂用于二氧化碳甲烷化[J]. 燃料化学学报(中英文). DOI: 10.1016/S1872-5813(24)60470-6
YANG Yan, GE Taochenxi, JIANG Yanan, ZHANG Xian, LIU Yuan. In situ growth of nickel based catalysts on the surface of macroporous Al2O3 for CO2 methanation[J]. Journal of Fuel Chemistry and Technology. DOI: 10.1016/S1872-5813(24)60470-6
Citation: YANG Yan, GE Taochenxi, JIANG Yanan, ZHANG Xian, LIU Yuan. In situ growth of nickel based catalysts on the surface of macroporous Al2O3 for CO2 methanation[J]. Journal of Fuel Chemistry and Technology. DOI: 10.1016/S1872-5813(24)60470-6

大孔氧化铝表面原位生长镍基催化剂用于二氧化碳甲烷化

In situ growth of nickel based catalysts on the surface of macroporous Al2O3 for CO2 methanation

  • 摘要: 本工作将大孔氧化铝用于CO2甲烷化反应,通过原位生长类水滑石(LDH)的方法在大孔氧化铝表面生成NiMgAl-LDH前驱体,制备出了高比表面积、大孔径和大孔容的Ni-MgO/Al2O3催化剂,并研究了煅烧温度、还原温度和空速对催化剂结构及反应性能的影响。通过调整煅烧温度来控制催化剂的物相组成,通过控制还原温度调节Ni的还原度和避免烧结,提高还原后的催化剂中Ni0的活性位数量,从而提高催化剂活性。结果表明,NiMgAl-LDH前驱体在400 ℃煅烧,650 ℃还原后,制备的Ni-MgO/Al2O3催化剂具有最高的Ni活性比表面积,对应CO2转化率和CH4选择性最优,显示提高Ni表面积是提高性能的一个关键。并且该材料在WHSV = 80000 mL/(g·h)的条件下仍能保持高催化性能,证明其能够适应高空速运行。此外,在550 ℃的测试温度下,该催化剂表现出优良的稳定性,CO2转化率保持在54%, CH4选择性保持在79%。

     

    Abstract: Macroporous catalysts exhibit excellent mass and heat transfer properties, thereby reducing pressure drop and mitigating hot spot formation during the reaction process. Addressing the issue of sintering of the active component on the catalyst due to the strong exothermicity of CO2 methanation and the demand for reactions to operate at high space velocities, this study for the first time utilized macroporous Al2O3 for CO2 methanation reactions. A catalyst comprising a high surface area, large pore size, and high pore volume was prepared by in-situ growth of layered double hydroxide (LDH) precursors on the surface of macroporous Al2O3. The effects of calcination temperature, reduction temperature, and space velocity on the catalyst structure and reaction performance were studied. The phase composition of the catalyst is controlled by adjusting the calcination temperature, the reduction degree of Ni is regulated and the sintering of Ni is avoided by controlling the reduction temperature , and the number of active sites of Ni0 in the reduced catalyst is increased, thus the activity of the catalyst is improved. The results demonstrate that after calcination of the NiMgAl-LDH precursor at 400 ℃ and reduction at 650 ℃, the resulted Ni-MgO/Al2O3 showed the highest Ni activity-specific surface area, which is the best catalyst with highest CO2 conversion and CH4 selectivity, indicating that increasing the surface area of metal nickel is crucial for the catalytic performance. Furthermore, the material maintained high catalytic performance at WHSV = 80000 mL/(g·h), indicating its suitability for high space velocity operations. Additionally, at a test temperature of 550 ℃, the catalyst exhibited excellent stability, with CO2 conversion and CH4 selectivity respectively remaining at 54% and 79%.

     

/

返回文章
返回