留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大孔氧化铝表面原位生长镍基催化剂用于二氧化碳甲烷化

杨妍 葛陶晨曦 姜雅楠 张弦 刘源

杨妍, 葛陶晨曦, 姜雅楠, 张弦, 刘源. 大孔氧化铝表面原位生长镍基催化剂用于二氧化碳甲烷化[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60470-6
引用本文: 杨妍, 葛陶晨曦, 姜雅楠, 张弦, 刘源. 大孔氧化铝表面原位生长镍基催化剂用于二氧化碳甲烷化[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60470-6
YANG Yan, GE Taochenxi, JIANG Yanan, ZHANG Xian, LIU Yuan. In situ growth of nickel based catalysts on the surface of macroporous Al2O3 for CO2 methanation[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60470-6
Citation: YANG Yan, GE Taochenxi, JIANG Yanan, ZHANG Xian, LIU Yuan. In situ growth of nickel based catalysts on the surface of macroporous Al2O3 for CO2 methanation[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60470-6

大孔氧化铝表面原位生长镍基催化剂用于二氧化碳甲烷化

doi: 10.1016/S1872-5813(24)60470-6
基金项目: 国家自然科学基金(21872101,21962014)资助,鄂尔多斯市重点研发计划项目(YF20232313),鄂尔多斯市产业创新人才团队和山西省区域合作项目的资助(202204041101029)
详细信息
    通讯作者:

    Tel: 13702112319, E-mail: yuanliu@tju.edu.cn

  • 中图分类号: O643.3

In situ growth of nickel based catalysts on the surface of macroporous Al2O3 for CO2 methanation

Funds: The project was supported by National Natural Science Foundation of China (21872101, 21962014), Ordos key R & D Program (YF20232313), Ordos Industrial Innovation Talent team and Shanxi Regional Cooperation Project (202204041101029).
  • 摘要: 大孔结构催化剂其有良好的传质、传热效果,于是可以减小反应过程的压力降和减缓热点生成。针对CO2甲烷化强放热导致催化剂活性组分烧结问题和对高空速下运行反应的需求,本文首次将大孔氧化铝用于CO2甲烷化反应,通过原位生长类水滑石(LDH)的方法在大孔氧化铝表面生成NiMgAl-LDH前驱体,制备出了高比表面积、大孔径和大孔容的Ni-MgO/Al2O3催化剂,并研究了煅烧温度、还原温度和空速对催化剂结构及反应性能的影响。通过调整煅烧温度来控制催化剂的物相组成,通过控制还原温度调节Ni的还原度和避免烧结,提高还原后的催化剂中Ni0的活性位数量,从而提高催化剂活性。结果表明,NiMgAl-LDH前驱体在400 ℃煅烧,650 ℃还原后,制备的Ni-MgO/Al2O3催化剂具有最高的Ni活性比表面积,对应CO2转化率和CH4选择性最优,显示提高Ni表面积是提高性能的一个关键。并且该材料在WHSV = 80000 mL/(g·h)的条件下仍能保持高催化性能,证明其能够适应高空速运行。此外,在550 ℃的测试温度下,该催化剂表现出优良的稳定性,CO2转化率保持在54%, CH4选择性保持在79%。
  • 图  1  a−c SEM图像: (a)γ-Al2O3载体,(b)NiMg/Al-LDH,(c) 400C,(d)650R,(e)XRD图,(f)N2吸附-脱附曲线,(g)NiMg/Al-LDH热分析图

    Figure  1  a−c SEM images of : (a) macroporous γ-Al2O3 support, (b) NiMg/Al-LDH, (c) 400C, (d) 650R,(e) XRD patterns, (f) N2 adsorption-desorption isotherms, (g) TG and DSC curves of NiMg/Al-LDH

    图  2  煅烧温度对NiMg/Al性能的影响

    Figure  2  The influence of calcination temperature on the properties of NiMg/Al

    (a): XRD patterns; (b): H2-TPR profiles; (c): CO2 Conversion; (d): CH4 Selectivity.

    图  3  还原温度对NiMgAl性能的影响

    Figure  3  Properties of NiMg/Al reduced at different temperatures

    (a): XRD; (b): H2-TPR profiles of catalysts reduced at different temperature; (c): CO2 Conversion; (d): CH4 Selectivity.

    图  4  不同温度还原后 NiMg/Al催化剂的TEM图:(a)550R,(b) 600R,(c)650R,(d)700R. 插图为颗粒的统计结果

    Figure  4  TEM images of NiMg/Al catalysts reduced at different temperature: (a) 550R, (b) 600R, (c) 650R, (d) 700R. The statistics of particle size distribution in inset

    图  5  不同温度还原后NiMg/Al催化剂的Ni 2p3/2的XPS谱图

    Figure  5  Ni 2p3/2 XPS spectra of NiMg/Al catalysts after reduction at different temperatures

    图  6  不同温度还原后NiMg/Al催化剂的TPD:(a)CO2-TPD,(b)H2-TPD

    Figure  6  TPD spectra of NiMg/Al catalysts after reduction at different temperatures: (a) CO2-TPD, (b) H2-TPD

    图  7  (a), (b) 650R在不同空速下的CO2转化率和CH4选择性, (c) 650R催化剂在550 ℃的CO2甲烷化稳定性测试, (d) 650R稳定性测试后的TG曲线

    Figure  7  (a), (b) CO2 conversion and CH4 Selectivity vs. reaction temperature over 650R catalyst under different space velocity for CO2 Methanation reaction at 550 ℃, (c) Stability of the 650R catalyst for CO2 methanation, (d) TG curves of the 650R catalyst after stability testing

    表  1  Al2O3,NiMg/Al-LDH和400C的BET 比表面积,孔径,孔体积

    Table  1  BET specific surface area, BJH pore diameter and volume of Al2O3 support, NiMg/Al-LDH and 400C

    Sample SBET/(m2·g −1 ) Pore Diameter/nm Pore Volume/(cm3·g −1 )
    γ-Al2O3 support 201 5.0 0.40
    NiMg/Al-LDH 218 4.9 0.34
    400C 226 5.7 0.37
    下载: 导出CSV

    表  2  还原温度对催化剂理化性质的影响

    Table  2  Effect of reduction temperature on phys-chemical properties of catalysts

    Sample RNi
    /%
    dNia
    /nm
    dNib
    /nm
    SNic
    / (m2 g−1)
    TOF
    / (10−3 s−1)
    Surface concentrationd
    /%
    Weak sitesf
    /(30−300 ℃)
    Moderate sitesf
    / (300−600 ℃)
    Ni/Te Mg/Te Al/Te
    550R 57.2 4.1 4.0 5.4 4.6 (7.7%)* 12.4 14.3 73.3 521 749
    600R 68.1 4.5 4.7 6.7 5.9 (13.1%) 10.6 15.9 73.5 298 1162
    650R 89.7 5.0 5.1 8.6 5.4 (15.7%) 10.0 18.9 71.1 641 986
    700R 100.0 6.9 7.0 4.5 4.8 (7.1%) 9.4 18.6 72.1 463 1011
    650R-sg 8.9
    下载: 导出CSV
  • [1] SASCHA K, ASTRID L, MATTHÄUS S, et al. Direct Reduction of Siderite Ore Combined with Catalytic CO/CO2 Hydrogenation to Methane and Methanol: A Technology Concept[J]. Chem Ing Tech,2022,94(5):701−711.
    [2] BAIER J, SCHNEIDER G, HEEL A. A Cost Estimation for CO2 Reduction and Reuse by Methanation from Cement Industry Sources in Switzerl[J]. Front Energy Res,2018,6:5−12.
    [3] 陈健, 王啸. 工业排放气资源化利用研究及工程开发[J]. 天然气化工(C1化学与化工),2020,45(2):121−128.

    CHEN Jian, WANG Xiao. Research progress and engineering development of industrial vent gas resource utilization[J]. Natural Gas Chemical Industry,2020,45(2):121−128.
    [4] WALA A, PAUL E, ZHE Y, et al. Plastic Waste Product Captures Carbon Dioxide in Nanometer Pores[J]. ACS Nano,2022,16(5):7284−7290.
    [5] BUI M, ADJIMAN C, BARDOW A, et al. Carbon capture and storage (CCS): the way forward[J]. Energy Environ Sci,2018,11(5):1062−1176.
    [6] KARIM G, KORBINIAN N, FATIMA Z. Chemical Methanation of CO2: A Review[J]. Chembioeng Rev,2016,3:266−275.
    [7] SHUHAO X, YUN L, HONG X, et al. Hydrogenation of CO2 to methanol over Cu/ZnCr catalyst[J]. Fuel,2019,256:115975−115979.
    [8] TIAN Y. J, HE X. Y, CHEN X. Z, et al. Transition metal modified hierarchical ZSM-5 nanosheet for catalytic cracking of n-pentane to light olefins[J]. Fuel,2024,363:130902−130908.
    [9] JEONG Y. A, SOON W. C, SANG M. L, et al. Developing Ni-based honeycomb-type catalysts using different binary oxide-supported species for synergistically enhanced CO2 methanation activity[J]. Fuel,2019,250:277−284.
    [10] YU H. T, YONG M, SHUANG L, et al. Morphology-dependent support effect of Ru/MnOx catalysts on CO2 methanation[J]. Colloid Surface A,2021,630:127636−127639.
    [11] QING L, XIAO L, YING J, et al. Crystal phase effects on the structure and performance of ruthenium nanoparticles for CO2 hydrogenation[J]. Catal Sci Technol,2014,4:2058−2063.
    [12] ANTOINE B, COLAS S, MARC J, et al. Methanation of CO2: Further insight into the mechanism over Rh/γ-Al2O3 catalyst[J]. Appl Catal B-Environ,2013,113-114:2−10.
    [13] MARTINS J, BATAIL N, SILVA S, et al. CO2 hydrogenation with shape-controlled Pd nanoparticles embedded in mesoporous silica: Elucidating stability and selectivity issues[J]. Catal Commun,2015,58:11−15.
    [14] SHOHEI T, TERUYUKI S, HIROMICHI K, et al. Ni/CeO2 catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures[J]. Int J Hydrogen Energy,2012,37(7):5527−5531.
    [15] WENHUI L, YI L, MINCHEN M, et al. Organic acid-assisted preparation of highly dispersed Co/ZrO2 catalysts with superior activity for CO2 methanation[J]. Appl Catal B-Environ,2019,254:531−540.
    [16] TAN J. F, ANDRE H. Are Fe based catalysts an upcoming alternative to Ni in CO2 methanation at elevated pressure?[J]. J CO2 Util,2020,39:101175−101179.
    [17] LV C, XU L, CHEN M, et al. Recent Progresses in Constructing the Highly Efficient Ni Based Catalysts With Advanced Low-Temperature Activity Toward 2 Methanation[J]. Front Chem,2020,8:269−276.
    [18] TRUEBA M, TRASATTI S P. γ-Alumina as a Support for Catalysts: A Review of Fundamental Aspects[J]. Eur J Inorg Chem,2005,17:3393−3401.
    [19] JIAO J. T, JIA M. W, ZI Y. Z, et al. Highly dispersed and stable Ni nanoparticles confined by MgO on ZrO2 for CO2 methanation[J]. Appl Surf Sci,2019,481:1538−1548.
    [20] JING Y. Z, HONG F. M, FANG Y. J, et al. Mn and Mg dual promoters modified Ni/α-Al2O3 catalysts for high temperature syngas methanation[J]. Fuel Process Technol,2018,172:225−232.
    [21] XIANG D. F, JIE F, WEN Y. L. Insight into MgO promoter with low concentration for the carbon-deposition resistance of Ni-based catalysts in the CO2 reforming of CH4[J]. Chinese J Catal,2018,39(1):88−98.
    [22] LI X, WANG Y, ZHANG G, et al. Influence of Mg-promoted Ni-based catalyst supported on coconut shell carbon for CO2 methanation[J]. Chem Select,2019,4:838−845.
    [23] TÜRKS, MENA H, ARMBRUSTER U, et al. Methanation of CO2 on Ni/Al2O3 in a Structured Fixed-Bed Reactor—A Scale-Up Study[J]. Catalysts,2017,7(5):152−159.
    [24] DAIBIN K, TORSTEN B, BERND S. Hierarchical Porous Silica Materials with a Trimodal Pore System Using Surfactant Templates[J]. J Am Chem Soc,2004,126(34):10534−10535.
    [25] 王漫云, 潘志爽, 刘涛, 等. 大孔氧化铝对催化裂化催化剂性能的影响[J]. 石化技术与应用,2022,40(4):4−8.

    WANG Manyun, PAN Zhishuang, LIU Tao, et al. Effect of macro-porous alumina on performance of fluid catalytic cracking catalysts[J]. Petrochemical Tech Appl,2022,40(4):4−8.
    [26] LU S, LIU Y. Preparation of meso-macroporous carbon nanotube-alumina composite monoliths and their application to the preferential oxidation of CO in hydrogen-rich gases[J]. Appl Catal B-Environ,2012,111:492−501.
    [27] ZHANG Y, ZHAO C. Y, LIANG H, et al. Macroporous monolithic Pt/γ-Al2O3 and K–Pt/γ-Al2O3 catalysts used for preferential oxidation of CO[J]. Catalysis lett,2009,127(3-4):339−347.
    [28] SING K. S. W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity(Recommendations 1984)[J]. Pure Appl Chem,1985,57(4):603−619. doi: 10.1351/pac198557040603
    [29] FROST R, MARTENS W, ERICKSON K. Thermal decomposition of the hydrotalcite[J]. J Therm Anal Calorim,2005,82:603−608.
    [30] ARENA F, FRUSTERI F, PARMALIANA A, et al. Effect of calcination on the structure of Ni/MgO catalyst: An X-ray diffraction study[J]. Cheminform,1996,27(25):469−471.
    [31] JIE J, ZE W, YU Z, et al. Carbon dioxide reforming of methane over MgO-promoted Ni/SiO2 catalysts with tunable Ni particle size[J]. Catal Today,2020,356:589−596.
    [32] MARTÍNEZ J, HERNÁNDEZ E, ALFARO S, et al. High selectivity and stability of nickel catalysts for CO2 Methanation: Support effects[J]. Catalyst,2019,9:24−30.
    [33] SALVATORE, ABATE, KATIA, et al. Synthesis, Characterization, and Activity Pattern of Ni-Al Hydrotalcite Catalysts in CO2 Methanation[J]. Ind Eng Chem Res,2016,55(30):8299−8308. doi: 10.1021/acs.iecr.6b01581
    [34] YONG Y, YI H. D, HONG H, et al. A novel W-doped Ni-Mg mixed oxide catalyst for CO2 methanation[J]. Appl Catal B: Environ,2016,196:108−116.
    [35] ZHANG J, YANG Y, LIU, J, et al. Mechanistic understanding of CO2 hydrogenation to methane over Ni/CeO2 catalyst[J]. Appl Surf Sci,2021,558:149866−149871.
    [36] LI L, ZENG W, SONG W, et al. Research Progress and Reaction Mechanism of CO2 Methanation over Ni-Based Catalysts at Low Temperature: A Review[J]. Catalysts,2022,12:244−249.
    [37] YAN R, OSCAR W, PEREZ L. Carbon dioxide methanation over Ni-Cu/SiO2 catalysts[J]. Energy Convers Manage,2020,203:112214−112219.
    [38] WILBERT L, JOLANDA W, ALEXANDER P, et al. Carbon dioxide methanation over Ni-Cu/SiO2 catalysts[J]. Catal Sci Technol,2019,9:5001−5010.
    [39] LIU X, ZHANG L, LI Z. Promotion Effect of TiO2 on Ni/SiO2-Catalysts Prepared by Hydrothermal Method for CO2 Methanation[J]. Energy Technol,2023,11(7):2201526−2201537.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  14
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-01
  • 修回日期:  2024-05-22
  • 录用日期:  2024-05-23
  • 网络出版日期:  2024-07-03

目录

    /

    返回文章
    返回