留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

淖毛湖煤和脱碱木质素共热解挥发物组成分布规律

李扬 吴博文 于志鹏 杨赫 靳立军 胡浩权

李扬, 吴博文, 于志鹏, 杨赫, 靳立军, 胡浩权. 淖毛湖煤和脱碱木质素共热解挥发物组成分布规律[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60471-8
引用本文: 李扬, 吴博文, 于志鹏, 杨赫, 靳立军, 胡浩权. 淖毛湖煤和脱碱木质素共热解挥发物组成分布规律[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60471-8
LI Yang, WU Bowen, YU Zhipeng, YANG He, JIN Lijun, HU Haoquan. Distribution of volatile composition from co-pyrolysis of NMH coal and dealkaline lignin[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60471-8
Citation: LI Yang, WU Bowen, YU Zhipeng, YANG He, JIN Lijun, HU Haoquan. Distribution of volatile composition from co-pyrolysis of NMH coal and dealkaline lignin[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60471-8

淖毛湖煤和脱碱木质素共热解挥发物组成分布规律

doi: 10.1016/S1872-5813(24)60471-8
基金项目: 国家自然科学基金(22278066, 21776039), 国家重点研发计划(2023YFB4103001)和中央高校基本科研业务费(DUT2021TB03)的资助
详细信息
    通讯作者:

    胡浩权(1961−),男,博士,教授,研究方向为煤化学与煤化工。Tel. & Fax: +86-411-84986157, E-mail: hhu@dlut.edu.cn

  • 中图分类号: TK6

Distribution of volatile composition from co-pyrolysis of NMH coal and dealkaline lignin

Funds: The project was supported by the National Natural Science Foundation of China (22278066, 21776039), the National Key R&D Program of China (2023YFB4103001), and The Fundamental Research Funds for the Central Universities (DUT2021TB03).
  • 摘要: 利用固定床反应器开展了淖毛湖煤和脱碱木质素的共热解实验,并研究了共热解产物的组成和产率变化规律。研究结果表明:共热解会降低半焦产率,促进热解气产率的提升,热解气产率最大提升了33.1%,共热解对于CH4、CO的生成有明显的促进作用;在煤和木质素混合比例为1∶1时,煤和木质素的热解挥发分间交互作用表现最明显,热解焦油产率表现出正协同作用。在共热解过程中,愈创木酚向单酚、双酚转化,相较于理论计算值,单酚、双酚化合物的含量分别增加了2.9%和9.8%,而愈创木酚的含量降低了5.1%;其原因可能是羰基和羧基的断裂与挥发分间的交互作用增强,抑制了醚类、醛类、酸类化合物的生成,促进了酚类的生成、含氧气体的释放与热解焦油的稳定。木质素的引入,显著促进了煤热解焦油轻质化,焦油中轻质组分比例接近90 %。
  • 图  1  固定床反应器示意图

    Figure  1  Schematic diagram of fixed-bed reactor

    图  2  煤和木质素的TG/DTG曲线

    Figure  2  TG/DTG curves of coal and lignin

    图  3  热解温度对煤(a)和木质素(b)热解产物分布的影响

    Figure  3  Effect of pyrolysis temperature on pyrolysis products distribution of coal (a) and lignin (b)

    图  4  煤和木质素共热解产物分布(a)、气体产率(b)

    Figure  4  Product distributions (a) and gas yield (b) of co-pyrolysis of coal and lignin

    图  5  混合比例对共热解产物分布的影响

    Figure  5  Effect of mixing ratio on the distribution of co-pyrolysis products

    (a): Char; (b): Tar; (c): Water; (d): Gas.

    图  6  共热解焦油中总化合物的组成(a)和协同作用(b)

    Figure  6  Chemical composition (a) and synergistic effects (b) of total compounds in co-pyrolysis tar

    图  7  共热解焦油中酚类化合物的组成(a)和协同作用(b)

    Figure  7  Chemical composition (a) and synergistic effects (b) of phenolic compounds in co-pyrolysis tar

    图  8  共热解焦油中其它含氧化合物的组成(a)和协同作用(b)

    Figure  8  Chemical composition (a) and synergistic effects (b) of other O-species compounds in co-pyrolysis tar

    图  9  煤和木质素共热解焦油的馏分分布

    Figure  9  Fraction distribution of co-pyrolysis tar

    图  10  煤和木质素共热解焦油中轻质组分含量的理论和实验值

    Figure  10  Calculated and experimental values of light component content in co-pyrolysis tar

    图  11  煤和木质素共热解半焦的红外谱图

    Figure  11  Infrared spectrum of co-pyrolysis char

    表  1  煤和木质素的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of coal and lignin

    Proximate analysis w/% Ultimate analysis wdaf/% H/C
    Mad Ad Vdaf C H N S O*
    Coal 7.00 4.86 44.38 68.39 5.04 0.99 0.23 25.35 0.88
    Lignin 2.15 15.43 53.13 53.47 4.57 0.13 4.62 37.21 1.03
    Mad: moisture content on air-dry basis; Ad: ash content on dry basis; Vdaf: volatile matters content on dry and ash-free basis. *: by difference.
    下载: 导出CSV

    表  2  煤和木质素共热解半焦红外光谱吸收峰归属

    Table  2  FTIR spectra of co-pyrolysis char

    Absorption peak/cm−1 Spectral peak attribution
    3640 Stretching vibrations of N-H
    3400 Stretching vibrations of -OH in alcohols, phenols, and carboxylic acids
    3040 Stretching vibrations of C-H in aromatic rings
    1690 Stretching vibrations of C=O in aromatic rings
    1570 Stretching vibrations of C=C in aromatic rings
    1430 Antisymmetric deformation vibrations of CH2
    and CH3 in alkyl chains
    1350 Symmetric bending vibrations of CH3
    1120 Stretching vibrations of C-O-C
    1000 Stretching vibrations of Si-O-Si, Si-O-C
    900−700 Deformation vibrations of aromatic CHx groups
    620 Bending vibrations of Si-O-Si or stretching vibration of organic sulfur
    下载: 导出CSV

    表  3  煤和木质素热解半焦的元素分析

    Table  3  Ultimate analyses of coal and lignin char

    Coal:Lignin C H N S O*
    1:0 74.51 2.97 1.21 0.41 20.90
    3:1-Exp 70.95 2.80 0.92 1.34 23.98
    3:1-Cal 72.17 2.74 0.98 1.31 22.81
    1:1-Exp 68.56 2.39 0.68 2.55 25.82
    1:1-Cal 69.83 2.50 0.75 2.21 24.72
    1:3-Exp 66.87 2.32 0.49 3.02 27.30
    1:3-Cal 67.48 2.26 0.52 3.10 26.64
    0:1 65.14 2.02 0.28 4.00 28.55
    *: by difference.
    下载: 导出CSV
  • [1] 吕清刚, 李诗媛, 黄粲然. 工业领域煤炭清洁高效燃烧利用技术现状与发展建议[J]. 中国科学院院刊.,2019,34(4):392−400.

    LU Qinggang, LIShiyuan, HUANG Canran. Status quo of coal clean and efficient combustion and utilization technology in the industrial field and development suggestions[J]. Bull Chin Acad Sci,2019,34(4):392−400.
    [2] KRERKKAIWAN S, FUSHIMI C, TSUTSUMI A, et al. Synergetic effect during co-pyrolysis/gasification of biomass and sub-bituminous coal[J]. Fuel Process Technol,2013,115:11−18. doi: 10.1016/j.fuproc.2013.03.044
    [3] HAYKIRI-ACMA H , YAMAN S. Interaction between biomass and different rank coals during co-pyrolysis[J]. Renew Energy, 2010, 35(1).
    [4] 易霜, 何选明, 郑辉, 等. 甘蔗渣与褐煤共热解半焦的特性[J]. 化工进展,2016,35(10):3149−3154.

    YI Shuang, HE Xuanming, ZHENG Hui, et al. Characterization of co-pyrolysis semi-coke from bagasse and lignite[J]. Chem Ind Eng Prog,2016,35(10):3149−3154.
    [5] 王春霞, 何选明, 敖福禄, 等. 低阶煤与浒苔低温共热解过程分析及动力学[J]. 化工进展,2014,33(11):2899−2904. doi: 10.3969/j.issn.1000-6613.2014.11.013

    (WANG Chunxia, HE Xuanming, AO Fulu, et al. Analysis and kinetics of low-temperature co-pyrolysis process between low-rank coal and seabed[J]. Chem Ind Eng Prog,2014,33(11):2899−2904. doi: 10.3969/j.issn.1000-6613.2014.11.013
    [6] 吕心则, 卢佳辰, 刘明华. 造纸黑液中木质素的提取及利用[J]. 华东纸业,2016,47(6):40−42. doi: 10.3969/j.issn.1674-6937.2016.06.012

    LU Xinze, LU Jiachen, LIU Minghua. Extraction and utilization of lignin from papermaking black liquor[J]. East China Paper,2016,47(6):40−42. doi: 10.3969/j.issn.1674-6937.2016.06.012
    [7] 王建飞, 赵建涛, 李风海, 等. 烟煤与生物质快速共热解产物特性分析[J]. 燃料化学学报,2015,43(6):641−648.

    WANG Jianfei, ZHAO Jiantao, LI Fenghai, et al. Characterization of fast co-pyrolysis products from bituminous coal and biomass[J]. J Fuel Chem Technol,2015,43(6):641−648.
    [8] 王俊丽, 赵强, 郝晓刚, 等. 低阶煤与生物质混合低温共热解特性分析及对产物组成的影响[J]. 燃料化学学报,2021,49(1):37−46.

    WANG Jun-li, ZHAO Qiang, HAO Xiaogang, et al. Characterization of low-temperature co-pyrolysis of low-rank coal and biomass mixture and its effect on product composition[J]. J Fuel Chem Technol,2021,49(1):37−46.
    [9] WEILAND N T, MEANS N C, MORREALE B D. Product distributions from isothermal co-pyrolysis of coal and biomass[J]. Fuel,2012,94:563−570. doi: 10.1016/j.fuel.2011.10.046
    [10] SONCINI R M, MEANS N C, WEILAND N T. Co-pyrolysis of low rank coals and biomass: Product distributions[J]. Fuel,2013,112:74−82. doi: 10.1016/j.fuel.2013.04.073
    [11] JELITA R, NATA I F, IRAWAN C, et al. Characterization and comparative study of pyrolysis of low-rank coal and biomass.[J]. Journal of Chemical Technology & Metallurgy.,2024,59(1):73−80.
    [12] RIZKIANA J, GUAN G, WIDAYATNO W B, et al. Effect of biomass type on the performance of cogasification of low rank coal with biomass at relatively low temperatures[J]. Fuel.,2014,134:414−419. doi: 10.1016/j.fuel.2014.06.008
    [13] BYAMBAJAV E, PAYSEPAR H, NAZARI L, et al. Co-pyrolysis of lignin and low rank coal for the production of aromatic oils[J]. Fuel Processing Technology.,2018,181:1−7. doi: 10.1016/j.fuproc.2018.09.008
    [14] 黄煜乾, 吴宇婷, 郑安庆, 等. 基于Py-GC-MS的木质素与褐煤共热解特性研究[J]. 新能源进展,2017,5(5):333−340. doi: 10.3969/j.issn.2095-560X.2017.05.002

    HUANG Yuqian, WU Yuting, ZHENG Anqing, et al. Co-pyrolysis characterization of lignin and lignite based on Py-GC-MS[J]. Adv New Renewable En,2017,5(5):333−340. doi: 10.3969/j.issn.2095-560X.2017.05.002
    [15] 王则祥, 李航, 谢文銮, 等. 木质素基本结构、热解机理及特性研究进展[J]. 新能源进展,2020,8(1):6−14. doi: 10.3969/j.issn.2095-560X.2020.01.002

    WANG Zexiang, LI Hang, XIE Wenluan, et al. Progress in the study of the basic structure, pyrolysis mechanism and properties of lignin[J]. Adv New Renewable En,2020,8(1):6−14. doi: 10.3969/j.issn.2095-560X.2020.01.002
    [16] WU J, GONG Z, LU C, et al. Preparation and Performance of Modified Red Mud-Based Catalysts for Selective Catalytic Reduction of NOx with NH3[J]. Catalysts,2018,8(1):35. doi: 10.3390/catal8010035
    [17] WU Z, LI Y, XU D, et al. Co-pyrolysis of lignocellulosic biomass with low-quality coal: Optimal design and synergistic effect from gaseous products distribution[J]. Fuel,2019,236:43−54. doi: 10.1016/j.fuel.2018.08.116
    [18] ZHAO H, LI Y, SONG Q, et al. Catalytic reforming of volatiles from co-pyrolysis of lignite blended with corn straw over three iron ores: Effect of iron ore types on the product distribution, carbon-deposited iron ore reactivity and its mechanism[J]. Fuel,2021,286:119398.1−119398.13.
    [19] SERIO M A, HAMBLEN D G, MARKHAM J R, et al. Kinetics of volatile product evolution in coal pyrolysis: experiment and theory[J]. Energ Fuel,1987,1(2):138−152. doi: 10.1021/ef00002a002
    [20] 熊言坤. 淖毛湖煤中有机质的结构研究[D]. 大连理工大学, 2020.

    XIONG Yankun. Structural study of organic matter in NaoMaoHu coal[D]. Dalian University of Technology, 2020.)
    [21] DAI G, ZHU Y, YANG J, et al. Mechanism study on the pyrolysis of the typical ether linkages in biomass[J]. Fuel,2019,249:146−153. doi: 10.1016/j.fuel.2019.03.099
    [22] ELDER T, BESTE A. Density Functional Theory Study of the Concerted Pyrolysis Mechanism for Lignin Models[J]. Energ Fuel,2014,28:5229−5235. doi: 10.1021/ef5013648
    [23] SHAO Q, ZHEN W, YU H, et al. A review on lignin waste valorization by catalytic pyrolysis: Catalyst, reaction system, and industrial symbiosis mode[J]. J Environ Chem Eng, 2023, 11(1).
    [24] WANG L, SI B, HAN X, et al. Study on the effect of red mud and its component oxides on the composition of bio-oil derived from corn stover catalytic pyrolysis[J]. Ind Crop Prod,2022,184:114973. doi: 10.1016/j.indcrop.2022.114973
    [25] HAN T, DING S, YANG W, et al. Catalytic pyrolysis of lignin using low-cost materials with different acidities and textural properties as catalysts[J]. Chem Eng J,2019,373:846−856. doi: 10.1016/j.cej.2019.05.125
    [26] GUO M, BI J. Characteristics and application of co-pyrolysis of coal/biomass blends with solid heat carrier[J]. Fuel Process Technol,2015,138:743−749. doi: 10.1016/j.fuproc.2015.07.018
    [27] 石金明. 典型煤种热解气化特性研究[D]. 华中科技大学, 2010.

    SHI Jinming. Characterization of pyrolysis gasification of typical coal species[D]. Huazhong University of Science and Technology, 2010.)
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  12
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-20
  • 修回日期:  2024-05-24
  • 录用日期:  2024-05-24
  • 网络出版日期:  2024-07-03

目录

    /

    返回文章
    返回