留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pt助剂的尺寸调控及其对光催化CO2制CH4性能的影响

陈瑶 陈朝秋 郝文韬 王文龙 熊昆 覃勇

陈瑶, 陈朝秋, 郝文韬, 王文龙, 熊昆, 覃勇. Pt助剂的尺寸调控及其对光催化CO2制CH4性能的影响[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60472-X
引用本文: 陈瑶, 陈朝秋, 郝文韬, 王文龙, 熊昆, 覃勇. Pt助剂的尺寸调控及其对光催化CO2制CH4性能的影响[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60472-X
CHEN Yao, CHEN Chaoqiu, HAO Wentao, WANG Wenlong, XIONG Kun, QIN Yong. Size regulation of Pt cocatalysts and its effect on the performance of photocatalytic CO2 transformation to CH4[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60472-X
Citation: CHEN Yao, CHEN Chaoqiu, HAO Wentao, WANG Wenlong, XIONG Kun, QIN Yong. Size regulation of Pt cocatalysts and its effect on the performance of photocatalytic CO2 transformation to CH4[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60472-X

Pt助剂的尺寸调控及其对光催化CO2制CH4性能的影响

doi: 10.1016/S1872-5813(24)60472-X
基金项目: 国家自然科学基金 (22372190),山西煤化所自主创新项目:基础研究项目(SCJC-2023-20),山西省科技创新人才团队专项(202304051001007)和环境友好能源材料国家重点实验室开放基金(21kfhg12)资助
详细信息
    通讯作者:

    E-mail: chenchaoqiu@sxicc.ac.cn

    qinyong@sxicc.ac.cn

  • 中图分类号: O643

Size regulation of Pt cocatalysts and its effect on the performance of photocatalytic CO2 transformation to CH4

Funds: The project was supported by National Natural Science Foundation of China (22372190), ICC CAS (SCJC-2023-20), the special fund for Science and Technology Innovation Teams of Shanxi Province (202304051001007), and the Open Project of State Key Laboratory of Environment-friendly Energy Materials (21kfhg12).
  • 摘要: 铂是光催化二氧化碳(CO2)还原制甲烷(CH4)最有效的助催化剂之一,但仍面临CO2还原速率和CH4选择性低的难题。本研究利用原子层沉积(ALD)制备了Pt颗粒尺寸可调(0.55−1.80 nm)的Pt/TiO2催化剂并将其用于光催化还原CO2制CH4反应。Pt/TiO2催化CO2还原速率和CH4选择性随Pt颗粒尺寸增加呈现出先增加后降低的火山型趋势,其中,Pt颗粒尺寸为1.35 nm时,催化剂的甲烷收率最高(71.9 μmol/(g·h))且没有检测到H2的生成,烷烃产物(CH4,C2H6,C3H8)选择性为100%,其中CH4的电子选择性和碳基产物中选择性分别高达81.69 %和90.20 %。CO-DRIFTS,XPS,CO2-TPD,H2O-TPD,H2-TPD等分析结果表明,Pt尺寸为1.35 nm时,具有最优的活化CO2能力、合适的活化H2O能力和较高的氢脱附温度,使H2O活化生成活性氢速率与CO2还原消耗活性氢速率相匹配,展示出最佳性能。本研究对开发高活性和高选择性的光催化CO2还原催化剂具有重要参考价值。
  • 图  1  (a)1Pt/ TiO2,(b)5Pt/ TiO2,(c)10Pt/ TiO2,(d)15Pt/ TiO2的TEM照片(插图为高倍透射电镜照片);(e)−(h)10Pt/ TiO2的EDS谱图

    Figure  1  TEM images of (a) 1Pt/ TiO2, (b) 5Pt/ TiO2, (c) 10Pt/ TiO2, (d) 15Pt/ TiO2 , where the insets show the corresponding HRTEM image; (e)−(h) EDS spectra of 10Pt/ TiO2

    图  2  (a)不同ALD循环数的XRD图;(b)xPt/TiO2的CO- DRIFTS谱

    Figure  2  (a) XRD patterns of different ALD cycles; (b) CO-DRIFTS spectra of xPt/TiO2

    图  3  (a)TiO2xPt/TiO2催化剂的XPS光谱图,(b) Pt 4f,(c)Ti 2p和(d) O 1s XPS光谱

    Figure  3  XPS spectra of (a) TiO2, xPt/TiO2 catalysts, (b) Pt 4f, (c)Ti 2p and (d) O 1s

    图  4  (a)TiO2xPt/TiO2催化剂的UV-vis谱和(b)PL谱

    Figure  4  (a) UV-vis and (b) PL spectra of TiO2, xPt/TiO2 catalysts

    图  5  不同催化剂的光催化CO2还原性能:氙灯照射下(光强1.7 W/cm2)(a)TiO2xPt/TiO2的产物生成速率,(b)产物的电子选择性,(c)C基产物的选择性;模拟太阳光AM1.5(光强1.2 W/cm2)时(d)TiO2xPt/TiO2的产物生成速率,(e)产物的电子选择性,(f)C基产物的选择性

    Figure  5  Photocatalytic CO2 reduction performance under irradiation by xenon lamp (1.7 W/cm2) (a) Product generation rate of TiO2 and xPt/TiO2, (b) Electronic selectivity of the product, (c) Selectivity of C-based products; Photocatalytic CO2 reduction performance under irradiation by xenon lamp with AM1.5 filter (1.2 W/cm2) (d) Product generation rate of TiO2 and xPt/TiO2,(e) Electronic selectivity of the product,(f) Selectivity of C-based products

    图  6  (a)CO2-TPD,(b) H2O-TPD 和(c) H2-TPD谱

    Figure  6  Spectra of (a) CO2-TPD, (b) H2O-TPD and (c) H2-TPD

    图  7  10Pt/TiO2光还原CO2制CH4原位红外光谱图

    Figure  7  In situ DRIFTS of the 10Pt/TiO2 catalyst during the CO2 photoreduction process

    图  8  10Pt/TiO2光还原CO2的可能路径

    Figure  8  The proposed CO2 photocatalytic reduction path on 10Pt/TiO2 nanocatalyst

    图  9  (a)10Pt/TiO2催化剂稳定性测试,(b)反应后10Pt/TiO2催化剂TEM图,(c)反应前后10Pt/TiO2催化剂的Pt 4f XPS光谱和(d)反应前后10Pt/TiO2催化剂中pt0、pt2+、pt4+含量关系

    Figure  9  (a) Stability test of 10Pt/TiO2 catalyst for photocatalytic CO2 reduction, (b) TEM images of the used 10Pt/TiO2 nanocatalyst, (c) Pt 4f XPS spectra of the fresh and used 10Pt/TiO2 nanocatalysts, and (d) the contents of pt0, pt2+, pt4+ in the fresh and used 10Pt/TiO2 nanocatalysts

    表  1  10Pt/TiO2与文献报道光催化CO2还原性能比较

    Table  1  Comparison of photocatalytic CO2 reduction performance of 10Pt/TiO2 with that reported in literatures

    催化剂 产物类型 CH4的生成速率(μmol g−1 h−1 CH4选择性/% 参考文献
    Pt-TiO2-SiO2 H2、CH4、CO 9.7 39.1 [11]
    Pt/D-TiO2−x CH4、CO 0.24 87.5 [21]
    Pt-SA/CTF-1 CH4、CO 4.7 76.6 [22]
    Pt@Def-CN H2、CH4、CO 6.3 99 [23]
    0.5% Pt-TiO2 H2、CH4、CO 5.2 40 [9]
    3%MgO-Pt-TiO2 H2、CH4、CO 6.3 83
    CdS/Pt/In2O3-30 CH4 38.3 100 [24]
    Pt/TiO2 CH4 12.5 81.14 [25]
    10Pt/TiO2 CH4、C2H6、C3H8 71.88 81.69(烷烃 100 %) This work
    下载: 导出CSV
  • [1] 张锦川, 杨应举, 刘晶, 等. Ni/SSZ-13催化剂的CO2甲烷化反应性能研究[J]. 燃料化学学报,2021,49(7):960−966.

    ZHANG Jinchuan, YANG Yingju, LIU Jing, et al. Catalytic activity of Ni/SSZ-13 catalyst for CO2 methanation[J]. J Fuel Chem Technol,2021,49(7):960−966.
    [2] 张艺严, 陈熙元, 董灵玉, 等. 炭载单原子催化剂在电还原二氧化碳领域的研究进展[J]. 燃料化学学报(中英文),2023,51(11):1617−1632.

    ZHANG Yiyan, CHEN Xiyuan, DONG Lingyu, et al. Research progress on electrocatalytic CO2 reduction over carbon-based single-atom catalysts[J]. J Fuel Chem Technol,2023,51(11):1617−1632.
    [3] LI X, YU J, JARONIEC M, et al. Cocatalysts for selective photoreduction of CO2 into solar fuels[J]. Chemical Rev,2019,119(6):3962−4179. doi: 10.1021/acs.chemrev.8b00400
    [4] 王晓星, 段永鸿, 张俊峰, 等. 串联催化剂上CO2催化转化制备高附加值烃类研究进展[J]. 燃料化学学报,2022,50(5):538−563. doi: 10.1016/S1872-5813(21)60181-0

    WANG Xiaoxing, DUAN Yonghong, ZHANG Junfeng, et al. Catalytic conversion of CO2 into high value-added hydrocarbons over tandem catalyst[J]. J Fuel Chem Technol,2022,50(5):538−563. doi: 10.1016/S1872-5813(21)60181-0
    [5] RAN J, JARONIEC M, QIAO S Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities[J]. Adv Mater,2018,30(7):1704649. doi: 10.1002/adma.201704649
    [6] CHENG S, SUN Z, LIM K H, et al. Emerging strategies for CO2 photoreduction to CH4: from experimental to data‐driven design[J]. Adv Energy Mater,2022,12(20):2200389. doi: 10.1002/aenm.202200389
    [7] LIU L, LI Y. Understanding the reaction mechanism of photocatalytic reduction of CO2 with H2O on TiO2-based photocatalysts: a review[J]. Aerosol Air Qua. Res,2014,14(2):453−469. doi: 10.4209/aaqr.2013.06.0186
    [8] GAO S, ZHANG Q, SU X, et al. Ingenious artificial leaf based on covalent organic framework membranes for boosting CO2 photoreduction[J]. J Am Chem Soc,2023,145(17):9520−9529. doi: 10.1021/jacs.2c11146
    [9] XIE S, WANG Y, ZHANG Q, et al. MgO- and Pt-promoted TiO2 as an efficient photocatalyst for the preferential reduction of carbon dioxide in the presence of water[J]. ACS Catal,2014,4(10):3644−3653. doi: 10.1021/cs500648p
    [10] WANG W N, AN W J, RAMALINGAM B, et al. Size and structure matter: enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals[J]. J Am Chem Soc,2012,134(27):11276−11281. doi: 10.1021/ja304075b
    [11] DONG C, LIAN C, HU S, et al. Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles[J]. Nature Com,2018,9(1):1252. doi: 10.1038/s41467-018-03666-2
    [12] MA X, AN Z, SONG H, et al. Atomic Pt-catalyzed heterogeneous anti-markovnikov C–N formation: Pt10 activating N–H for Pt1δ+-activated C═C attack[J]. J Am Chem Soc,2020,142(19):9017−9027. doi: 10.1021/jacs.0c02997
    [13] CHEN Y, WAN Q, CAO L, et al. Facet-dependent electronic state of Pt single atoms anchoring on CeO2 nanocrystal for CO (preferential) oxidation[J]. J Catal,2022,415:174−185. doi: 10.1016/j.jcat.2022.10.002
    [14] YANG J, REN X, ZHANG X, et al. Mechanistic and kinetic insights into size-dependent activity in ultra-small Pt/CNTs nanozymes during antibacterial process[J]. Arabian J Chem,2022,15(11):104238. doi: 10.1016/j.arabjc.2022.104238
    [15] ZHANG J, GAO Z, WANG S, et al. Origin of synergistic effects in bicomponent cobalt oxide-platinum catalysts for selective hydrogenation reaction[J]. Nature Com,2019,10(1):4166. doi: 10.1038/s41467-019-11970-8
    [16] JIANG Z, ZHANG W, JIN L, et al. Direct XPS evidence for charge transfer from a reduced rutile TiO2(110) surface to Au clusters[J]. J Phys Chem C,2007,111(33):12434−12439. doi: 10.1021/jp073446b
    [17] WANG H, GU X K, ZHENG X, et al. Disentangling the size-dependent geometric and electronic effects of palladium nanocatalysts beyond selectivity[J]. Sci Adv,2019,5(1):eaat6413. doi: 10.1126/sciadv.aat6413
    [18] WANG L, MAO Z, MAO X, et al. Engineering interfacial Pt−O−Ti site at atomic step defect for efficient hydrogen evolution catalysis [J]. Small, 2023: 2309791.
    [19] SHIRAISHI Y, SAKAOTO H, FUJIWARK K, et al. Selective photocatalytic oxidation of aniline to nitrosobenzene by Pt nanoparticles supported on TiO2 under visible light irradiation[J]. ACS Catal,2014,4(8):2418−2425. doi: 10.1021/cs500447n
    [20] LI J, SHEN Q, LI J, et al. d–sp interband transition excited carriers promoting the photochemical growth of plasmonic gold nanoparticles[J]. J Phys Chem Lett,2020,11(19):8322−8328. doi: 10.1021/acs.jpclett.0c02325
    [21] YU F, WAANG C, MA H, et al. Revisiting Pt/TiO2 photocatalysts for thermally assisted photocatalytic reduction of CO2[J]. Nanoscale,2020,12(13):7000−7010. doi: 10.1039/C9NR09743K
    [22] HUANG G, NIU Q, ZHANG J, et al. Platinum single-atoms anchored covalent triazine framework for efficient photoreduction of CO2 to CH4[J]. Chem Eng J,2022,427:131018. doi: 10.1016/j.cej.2021.131018
    [23] SHI X, HUANG Y, BO Y, et al. Highly selective photocatalytic CO2 methanation with water vapor on single-atom platinum-decorated defective carbon nitride[J]. Angew Chem Int Ed,2022,61(27):e202203063. doi: 10.1002/anie.202203063
    [24] LIU P, MEN Y L, MENG X Y, et al. Electronic interactions on platinum/(metal-oxide)-based photocatalysts boost selective photoreduction of CO2 to CH4[J]. Angew Chem Int Ed,2023,62(38):e202309443. doi: 10.1002/anie.202309443
    [25] LIU Y, KANG S, LI T, et al. High-efficiency photoreduction of CO2 in a low vacuum[J]. Phys Chemistry Chem Phys,2022,24(25):15389−15396. doi: 10.1039/D2CP00269H
    [26] BI J, LI P, LIU J, et al. High-rate CO2 electrolysis to formic acid over a wide potential window: an electrocatalyst comprised of indium nanoparticles on chitosan-derived graphene[J]. Angew Chem Int Ed,2023,62(36):e202307612. doi: 10.1002/anie.202307612
    [27] XIE Y, CHEN J, WU X, et al. Frustrated lewis pairs boosting low-temperature CO2 methanation performance over Ni/CeO2 nanocatalysts[J]. ACS Catal,2022,12(17):10587−10602. doi: 10.1021/acscatal.2c02535
    [28] ZHANG W, WANG H, JIANG J, et al. Size dependence of Pt catalysts for propane dehydrogenation: from atomically dispersed to nanoparticles[J]. ACS Catal,2020,10(21):12932−12942. doi: 10.1021/acscatal.0c03286
    [29] ZHANG J, PAN Y, FENG D, et al. Mechanistic insight into the synergy between platinum single atom and cluster dual active sites boosting photocatalytic hydrogen evolution[J]. Adv Mater,2023,35(25):2300902. doi: 10.1002/adma.202300902
    [30] BAI S, JING W, HE G, et al. Near-infrared-responsive photocatalytic CO2 conversion via in situ generated Co3O4/Cu2O[J]. ACS Nano,2023,17(11):10976−10986. doi: 10.1021/acsnano.3c03118
    [31] LI Z, ZHU G, ZHANG W, et al. Dual-functional copper (Cu0/Cu2+)-modified SrTiO3-δ nanosheets with enhanced photothermal catalytic performance for CO2 reduction and H2 evolution[J]. Chem Eng J,2023,452:139378. doi: 10.1016/j.cej.2022.139378
    [32] WU Y, CHEN Q, ZHU J, et al. Selective CO2-to-C2H4 photoconversion enabled by oxygen-mediated triatomic sites in partially oxidized bimetallic sulfide[J]. Angew Chem Int Ed,2023,62(15):e202301075. doi: 10.1002/anie.202301075
    [33] GONG S, NIU Y, TENG X, et al. Visible light-driven, selective CO2 reduction in water by In-doped Mo2C based on defect engineering[J]. Appl Catal B: Environ,2022,310:121333. doi: 10.1016/j.apcatb.2022.121333
    [34] OU H, NING S, ZHU P, et al. Carbon nitride photocatalysts with integrated oxidation and reduction atomic active centers for improved CO2 conversion[J]. Angew Chem Int Ed,2022,61(34):e202206579. doi: 10.1002/anie.202206579
    [35] SU B, KONG Y, WANG S, et al. Hydroxyl-bonded Ru on metallic TiN surface catalyzing CO2 reduction with H2O by infrared light[J]. J Am Chem Soc,2023,145(50):27415−27423. doi: 10.1021/jacs.3c08311
    [36] SHEN Y, REN C, ZHENG L, et al. Room-temperature photosynthesis of propane from CO2 with Cu single atoms on vacancy-rich TiO2[J]. Nature Com,2023,14(1):1117. doi: 10.1038/s41467-023-36778-5
    [37] WANG W, ZHANG W, DENG C, et al. Accelerated photocatalytic carbon dioxide reduction and water oxidation under spatial synergy[J]. Angew Chem Int Ed,2024,63(7):e202317969. doi: 10.1002/anie.202317969
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  31
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-29
  • 修回日期:  2024-04-30
  • 录用日期:  2024-05-07
  • 网络出版日期:  2024-07-04

目录

    /

    返回文章
    返回