留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Controllable synthesis of CuAlO2 via solid-phase method and its catalytic performance for methanol steam reforming to hydrogen

QING Shaojun SUN Xun LI Xinglong WANG Lei WU Zhiwei WANG Jianguo

庆绍军, 孙逊, 李兴龙, 王磊, 吴志伟, 王建国. 固相球磨法可控制备CuAlO2及其甲醇重整制氢催化性能研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60473-1
引用本文: 庆绍军, 孙逊, 李兴龙, 王磊, 吴志伟, 王建国. 固相球磨法可控制备CuAlO2及其甲醇重整制氢催化性能研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60473-1
QING Shaojun, SUN Xun, LI Xinglong, WANG Lei, WU Zhiwei, WANG Jianguo. Controllable synthesis of CuAlO2 via solid-phase method and its catalytic performance for methanol steam reforming to hydrogen[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60473-1
Citation: QING Shaojun, SUN Xun, LI Xinglong, WANG Lei, WU Zhiwei, WANG Jianguo. Controllable synthesis of CuAlO2 via solid-phase method and its catalytic performance for methanol steam reforming to hydrogen[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60473-1

固相球磨法可控制备CuAlO2及其甲醇重整制氢催化性能研究

doi: 10.1016/S1872-5813(24)60473-1
详细信息
  • 中图分类号: O643.32

Controllable synthesis of CuAlO2 via solid-phase method and its catalytic performance for methanol steam reforming to hydrogen

Funds: The project was supported by the Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology(2023yjrc51), the National Natural Science Foundation of China (22172184), the Foundation of State Key Laboratory of Coal Conversion (J24-25-603), the Fundamental Research Project of ICC-CAS (SCJC-DT-2023-01), Weiqiao-UCAS Special Projects on Low-Carbon Technology Development (GYY-DTFZ-2022-015).
More Information
  • 摘要: 本工作以氢氧化铜和拟薄水铝石作为原料,采用固相球磨法可控合成了CuAlO2缓释催化剂,并探究了其在甲醇水蒸汽重整反应中的催化性能。重点研究了焙烧温度、焙烧气氛和加热速率对CuAlO2缓释催化剂的结构影响。通过BET、XRD、XPS、SEM和H2-TPR等表征技术分析,结果显示焙烧温度对CA-T催化剂的相组成、比表面积、还原性能和表面性质有显著影响;对比分析表明高焙烧温度、氮气气氛和低加热速率有利于CuAlO2结构的生成。催化评价数据表明,CuAlO2可以在无预还原条件下实现高性能的甲醇重整制氢反应,而催化剂反应性能与焙烧温度密切相关,在800−1200 oC焙烧温度下, 1100 oC焙烧条件下制备的CA-1100催化剂表现出最佳的催化活性和稳定性。本研究的结果可为缓释催化材料的合成、缓释催化性能调控等的进一步深入研究提供有效的基础数据和理论支撑。
  • Figure  1  BJH pore size distributions of CA-T calcined at 800−1200 °C

    Figure  2  XRD patterns of CA-T catalysts

    Figure  3  SEM images of CA-T catalysts calcined at 800−1200 °C

    Figure  4  H2-TPR profiles of CA-T calcined at 800−1200 °C

    Figure  5  XPS spectrum of CA-T calcined at 800−1200 °C

    (a): Cu 2p3/2; (b): Al 2p.

    Figure  6  H2-TPR profiles

    (a): CA-T-A calcined at 1000−1200 °C; (b): CA-1100 with different heating rate.

    Figure  7  XRD patterns and H2-TPR profiles of CA2-1200-A and CA2-1200-A-(1000-N)

    Figure  8  Synthesis route of CuAlO2 by solid-phase method

    Figure  9  The variation of methanol conversion with TOS on the CA-T catalysts Reaction conditions: H2O/CH3OH =2.26, 300 °C,1.0MPa and 2.16 h−1.

    Figure  10  XRD patterns ofCA-T-t catalysts

    Table  1  Characteristics of fresh CA-T and testedCA-T-t

    CA-800 CA-900 CA-1000 CA-1100 CA-1200
    S/(m2·g−1) 64.1 33.5 25.2 21.2 19.2
    vpore/(cm3·g−1) 0.334 0.225 0.134 0.093 0.037
    dpore/nm 20.8 26.9 25.4 19.3 6.6
    xCuO/%a 95.9 71.5 19.3 13.1 9.5
    $x_{{\mathrm{CuAl_2O_4}}} $/%a 4.1 28.5 14.1 10.7 4.5
    $x_{{\mathrm{CuAlO}}_2} $/%a / / 66.6 76.2 86.0
    $d_{{\mathrm{CuAlO}}_2} $/nmb / / 24.5 25.9 27.0
    a/Åc / / 2.8565 2.8542 2.8535
    c/Åc / / 16.977 16.939 16.969
    (Cu/Al)surfaced 0.207 0.215 0.198 0.142 0.136
    a: The molar ratio of the phase to total Cu in the TPR pattern (Figure 4); b: The crystallite sizes were calculated by the Scherrer equation from the XRD patterns (Figure 2); c: Cell parameter of CuAlO2; d: The surface Cu/Al molar ratio calculated from the XPS data of Cu 2p3/2 and Al 2p (Figure 5).
    下载: 导出CSV

    Table  2  The molar ratio of copper species of CA-T-A and CA-1100 with different heating rate

    Cat. name xCuO/% $x_{{\mathrm{CuAl_2O_4}}} $/% $x_{{\mathrm{CuAlO}}_2} $/%
    CA-1000-A 65.1 34.9 /
    CA-1100-A 39.7 38.4 21.9
    CA-1200-A 8.9 7.6 83.5
    CA-1100(1 °C/min) 12.5 5.7 81.9
    CA-1100(3 °C/min) 13.2 10.7 76.2
    CA-1100(5 °C/min) 13.6 12.6 73.8
    CA-1100(7 °C/min) 14.2 13.5 72.3
    CA-1100(10 °C/min) 13.9 22.0 64.1
    下载: 导出CSV

    Table  3  Characteristics of testedCA-T-t catalysts

    CA-800-t CA-900-t CA-1000-t CA-1100-t CA-1200-t
    TOS/ha 347 350 350 349 350
    SR/%b 100 100 82.0 46.0 34.4
    R(%·h−1)c 0.288 0.286 0.234 0.132 0.098
    a: Reaction times; b: Sustained release ratio of Cux+ species, which was calculated with the data of H2-TPR of regeneration samples; c: Average sustained releasing rate of Cux+ species is equal to the SR/TOS.
    下载: 导出CSV
  • [1] JAIN I P. Hydrogen the fuel for 21st century[J]. Int J Hydrogen Energ,2009,34:7368−7378. doi: 10.1016/j.ijhydene.2009.05.093
    [2] XU X H, SHUAI K P, XU B. Review on Copper and Palladium based catalysts for methanol steam reforming to produce hydrogen[J]. Catalysts,2017,7:183−198. doi: 10.3390/catal7060183
    [3] ABE J O, POPOOLA A P I, AJENIFUJA E, et al. Hydrogen energy, economy and storage: Review and recommendation[J]. Int J Hydrogen Energ,2019,44:15072−86. doi: 10.1016/j.ijhydene.2019.04.068
    [4] OLAH G A, SURYA PRAKASH G K, GOEPPERT A. Anthropogenic chemical carbon cycle for a sustainable future[J]. J Am Chem Soc,2011,133:12881−12898. doi: 10.1021/ja202642y
    [5] YONG S T, OOI C W, CHAI S P, et al. Review of methanol reforming-Cu-based catalysts, surface reaction mechanisms, and reaction schemes[J]. Int J Hydrogen Energ,2013,38:9541−9552. doi: 10.1016/j.ijhydene.2013.03.023
    [6] ŚLIWA M, SAMSON K. Steam reforming of ethanol over copper-zirconia based catalysts doped with Mn, Ni, Ga[J]. Int J Hydrogen Energ,2021,46:555−564. doi: 10.1016/j.ijhydene.2020.09.222
    [7] CARDOSO J S, SILVA V, ROCHA R C, et al. Ammonia as an energy vector: Current and future prospects for low-carbon fuel applications in internal combustion engines[J]. J Clean Prod,2021,296:126562. doi: 10.1016/j.jclepro.2021.126562
    [8] WANG K, YAO Q L, QING S J, et al. La(OH)3 nanosheet-supported CoPt nanoparticles: a highly efficient and magnetically recyclable catalyst for hydrogen production from hydrazine in aqueous solution[J]. J Mater Chem A,2019,7:9903−9911. doi: 10.1039/C9TA01066A
    [9] MORADI R, GROTH K M. Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis[J]. Int J Hydrogen Energ,2019,44:12254−12269. doi: 10.1016/j.ijhydene.2019.03.041
    [10] GU X J, LU Z H, JIANG H L, et al. Synergistic catalysis of metal–organic framework-immobilized Au–Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage[J]. J Am Chem Soc,2011,133:11822−11825. doi: 10.1021/ja200122f
    [11] IULIANELLI A, RIBEIRINHA P, MENDES A, et al. Methanol steam reforming for hydrogen generation via conventional and membrane reactors: A review[J]. Renew Sust Energ Rev,2014,29:355−368. doi: 10.1016/j.rser.2013.08.032
    [12] GAC W, SŁOWIK G, ZAWADZKI W. Structural and surface changes of copper modified manganese oxides[J]. Appl Surf Sci,2016,370:536−544. doi: 10.1016/j.apsusc.2016.02.136
    [13] KAPRAN A Y, ORLYK S M. Hydrogen production in methanol reforming on modified copper–zinc catalysts: A review[J]. Theor Exp Chem,2017,53:1−16. doi: 10.1007/s11237-017-9495-9
    [14] LIN L L, ZHOU W, GAO R, et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts[J]. Nature,2017,544:80−83. doi: 10.1038/nature21672
    [15] HATTORI M, NODA K. All electrochemical fabrication of a bilayer membrane composed of nanotubular photocatalyst and palladium toward high-purity hydrogen production[J]. Appl Surf Sci,2015,357:214−220. doi: 10.1016/j.apsusc.2015.08.236
    [16] ZENG Z L, LIU G L, GENG J F, et al. A high-performance PdZn alloy catalyst obtained from metal-organic framework for methanol steam reforming hydrogen production[J]. Int J Hydrogen Energ,2019,44:24387−24397. doi: 10.1016/j.ijhydene.2019.07.195
    [17] CLAUDIO-PIEDRAS A, RAMÍREZ-ZAMORA R M, ALCÁNTAR-VÁZQUEZ B C, et al. One dimensional Pt/CeO2-NR catalysts for hydrogen production by steam reforming of methanol: Effect of Pt precursor[J]. Catal Today,2021,360:55−62. doi: 10.1016/j.cattod.2019.08.013
    [18] PURNAMA H, GIRGSDIES F, RESSLER T, et al. Activity and selectivity of a nanostructured CuO/ZrO2 catalyst in the steam reforming of methanol[J]. Catal Lett,2004,94:61−68. doi: 10.1023/B:CATL.0000019332.80287.6b
    [19] MRAD M, HAMMOUD D, GENNEQUIN C, et al. A comparative study on the effect of Zn addition to Cu/Ce and Cu/Ce–Al catalysts in the steam reforming of methanol[J]. Appl Catal A: Gen,2014,471:84−90. doi: 10.1016/j.apcata.2013.11.025
    [20] JONES S D, NEAL L M, EVERETT M L, et al. Characterization of ZrO2-promoted Cu/ZnO/nano-Al2O3 methanol steam reforming catalysts[J]. Appl Surf Sci,2010,256:7345−7353. doi: 10.1016/j.apsusc.2010.05.021
    [21] LU P J, CAI F F, ZHANG Y Y, et al. Hydrogen production from methanol steam reforming over B-modified CuZnAlOx catalysts[J]. J Fuel Chem Technol,2019,47:791−798. doi: 10.1016/S1872-5813(19)30035-0
    [22] MOHTASHAMI Y, TAGHIZADEH M. Performance of the ZrO2 promoted CuZnO catalyst supported on acetic acid-treated MCM-41 in methanol steam reforming[J]. Int J Hydrogen Energ,2019,44:5725−5738. doi: 10.1016/j.ijhydene.2019.01.029
    [23] XI H J, HOU X N, LIU Y J, et al. Cu–Al spinel oxide as an efficient catalyst for methanol steam reforming[J]. Angew Chem Int Edit.,2014,53:11886−11889. doi: 10.1002/anie.201405213
    [24] LIU Y J, QING S J, HOU X N, et al. Temperature dependence of Cu–Al spinel formation and its catalytic performance in methanol steam reforming[J]. Catal Sci Technol,2017,7:5069−5078. doi: 10.1039/C7CY01236E
    [25] LIU Y J, QING S J, HOU X N, et al. Cu−Ni−Al spinel oxide as an efficient durable catalyst for methanol steam reforming[J]. ChemCatChem,2018,10:5698−5706. doi: 10.1002/cctc.201801472
    [26] QING S J, HOU X N, LIU Y J, et al. Catalytic performance of Cu-Ni-Al spinel for methanol steam reforming to hydrogen[J]. J Fuel Chem Technol,2018,46:1210−1217. doi: 10.1016/S1872-5813(18)30050-1
    [27] HOU X N, QING S J, LIU Y J, et al. Cu1−xMgxAl3 spinel solid solution as a sustained release catalyst: One-pot green synthesis and catalytic performance in methanol steam reforming[J]. Fuel,2021,284:119041. doi: 10.1016/j.fuel.2020.119041
    [28] HOU X N, QING S J, LIU Y J, et al. Enhancing effect of MgO modification of Cu–Al spinel oxide catalyst for methanol steam reforming[J]. Int J Hydrogen Energ,2020,45:477−489. doi: 10.1016/j.ijhydene.2019.10.164
    [29] QIN F J, LIU Y J, QING S J, et al. Cu-Al spinel as a sustained release catalyst for H2 production from methanol steam reforming: Effects of different copper sources[J]. J Fuel Chem Technol,2017,45:1481−1488. doi: 10.1016/S1872-5813(17)30065-8
    [30] QING S J, HOU X X, LIU Y J, et al. Strategic use of CuAlO2 as a sustained release catalyst for production of hydrogen from methanol steam reforming[J]. Chem Commun,2018,54:12242−12245. doi: 10.1039/C8CC06600K
    [31] QING S J, HOU X N, LIU Y J, et al. A novel supported Cu catalyst with highly dispersed copper nanoparticles and its remarkable catalytic performance in methanol decomposition[J]. RSC Adv,2014,4:52008−52011. doi: 10.1039/C4RA10101D
    [32] KATO S, FUJIMAKI R, OGASAWARA M, et al. Oxygen storage capacity of CuMO2 (M=Al, Fe, Mn, Ga) with a delafossite-type structure[J]. Appl Catal B: Environ,2009,89:183−188. doi: 10.1016/j.apcatb.2008.11.033
    [33] IGBARI O, XIE Y M, JIN Z M, et al. Microstructural and electrical properties of CuAlO2 ceramic prepared by a novel solvent-free ester elimination process[J]. J Alloys Compd,2015,653:219−227. doi: 10.1016/j.jallcom.2015.08.268
    [34] SATO S, IIJIMA M, NAKAYAMA T, et al. Vapor-phase dehydrocoupling of methanol to methyl formate over CuAl2O4[J]. J Catal,1997,169:447−454. doi: 10.1006/jcat.1997.1719
    [35] ISHIGURO T, ISHIZAWA N, MIZUTANI N, et al. High temperature structural investigation of the delafossite type compound CuAlO2[J]. J Solid State Chem,1982,41:132−137. doi: 10.1016/0022-4596(82)90193-1
    [36] NIE X L, WEI S S, ZHANG S B. Bipolar doping and band-gap anomalies in delafossite transparent conductive oxides[J]. Phys Rev Lett,2002,88:066405. doi: 10.1103/PhysRevLett.88.066405
    [37] HAMADA I, KATAYAMA-YOSHIDA H. Energetics of native defects in CuAlO2[J]. Phys B: Condensed Matter, 2006, 376-377, 808-811.
    [38] FANG M, HE H P, LU B, et al. Optical properties of p-type CuAlO2 thin film grown by rf magnetron sputtering[J]. Appl Surf Sci,2011,257:8330−8333. doi: 10.1016/j.apsusc.2011.03.116
    [39] FROST D C, ISHITANI A, MCDOWELL C A. X-ray photoelectron spectroscopy of copper compounds[J]. Mol Phys,1972,24:861−877. doi: 10.1080/00268977200101961
    [40] OKU M, HIROKAWA K. The effect of the next nearest neighbor ion on the X-ray photoelectron spectra of 2p levels for Co2+, Ni2+ and Cu2+ in MgO[J]. J Electron Spectrosc,1977,10:103−110. doi: 10.1016/0368-2048(77)85008-1
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  19
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-30
  • 修回日期:  2024-06-02
  • 录用日期:  2024-06-03
  • 网络出版日期:  2024-07-06

目录

    /

    返回文章
    返回