留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氟掺杂在碳辅助电解水制氢中强化碳氧化反应研究

刘琦 窦燕青 巩宙婷 刘守军 陈亮宇 陶钰文 刘晋芳 杨颂

刘琦, 窦燕青, 巩宙婷, 刘守军, 陈亮宇, 陶钰文, 刘晋芳, 杨颂. 氟掺杂在碳辅助电解水制氢中强化碳氧化反应研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60474-3
引用本文: 刘琦, 窦燕青, 巩宙婷, 刘守军, 陈亮宇, 陶钰文, 刘晋芳, 杨颂. 氟掺杂在碳辅助电解水制氢中强化碳氧化反应研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60474-3
LIU Qi, DOU Yanqing, GONG Zhouting, LIU Shoujun, CHEN Liangyu, TAO Yuwen, LIU Jinfang, YANG Song. Research on improving carbon oxidation reaction by fluorine doping in carbon-assisted electrolytic water-hydrogen production[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60474-3
Citation: LIU Qi, DOU Yanqing, GONG Zhouting, LIU Shoujun, CHEN Liangyu, TAO Yuwen, LIU Jinfang, YANG Song. Research on improving carbon oxidation reaction by fluorine doping in carbon-assisted electrolytic water-hydrogen production[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60474-3

氟掺杂在碳辅助电解水制氢中强化碳氧化反应研究

doi: 10.1016/S1872-5813(24)60474-3
基金项目: 山西省基础研究计划(202203021212245),山西省科技成果转化指导专项(202104021301052)和山西省专利转化计划(202306013)的资助
详细信息
    通讯作者:

    Tel: 13233620827, E-mail: yangsong@tyut.edu.cn

Research on improving carbon oxidation reaction by fluorine doping in carbon-assisted electrolytic water-hydrogen production

Funds: This research was supported by the Fundamental Research Program of Shanxi Province of China (202203021212245), the Shanxi Provincial Science and Technology Achievement Transformation Guidance Special Program of China (202104021301052) and the Shanxi Provincial Patent Transformation Program of China (202306013).
  • 摘要: 面临着“双碳”目标的约束,氢能,尤其是电解水制氢技术受到了广泛的关注。然而,高能耗是制约该技术产业化的关键问题之一。基于此,提出“牺牲阳极碳辅助电解水制氢”的策略,利用碳氧化反应(COR)替代析氧反应(OER),实现能耗的大幅降低。具体是利用两步碳化法制备出F掺杂生物炭(记作F-BC-850),采用XRD、SEM-EDS、热重分析、XPS等表征手段解析F-BC-850的结构特征;通过电化学方法阐明F-BC-850与制氢性能间的构效关系。结果表明:在0.5 M H2SO4溶液中,10 mA/cm2下,其能耗是传统Pt片电极的57.9%;表征结果发现氟化铵热解产生的HF刻蚀生物炭,能够形成活性较强的C−F键,进而提升了碳氧化性能。F物种的引入改变了碳结构,促进H2O分子产生*OH,并强化了碳原子对*OH的吸附能力。本工作可为碳辅助电解水制氢高效产H2和生物质高值化利用提供科学依据。
  • 图  1  不同热解温度下改性生物炭的XRD图谱

    Figure  1  XRD patterns of modified biochar at different pyrolysis temperatures

    图  2  不同热解温度下改性生物炭的XPS图谱:(a)BC和F-BC-850样品的C 1s精细谱;(b)F-BC-450/650/850样品的F 1s精细谱;(c)BC和F-BC-850样品的C 1s各化学键含量;(d)F-BC-450/650/850样品的F 1s各化学键含量

    Figure  2  XPS spectra of modified biochar at different pyrolysis temperatures: (a) C 1s fine spectrum of BC and F-BC-850 sample; (b) F 1s fine spectrum of F-BC-450/650/850 sample; (c) Content of C 1s chemical bonds in BC and F-BC-850 samples; (d) Content of F 1s chemical bonds in F-BC-450/650/850 samples

    图  3  在0.5 M H2SO4溶液中对BC、F-BC-450、F-BC-650和F-BC-850以及Pt电极进行电化学测试:(a)线性扫描伏安(LSV)曲线(无iR补偿);(b)1.6 V vs. RHE下的电流密度;(c)在1.6V vs. RHE,1h的总电荷;(d)1.6 V vs. RHE下的恒电位曲线

    Figure  3  Electrochemical tests were performed on BC, F-BC-450, F-BC-650, F-BC-850, and Pt electrodes in a 0.5 M H2SO4 solution: (a) Linear sweep voltammetry (LSV) curve (No iR compensation); (b) Current density at 1.6 V vs. RHE; (c) Total charge at 1.6V vs. RHE for 1 hour; (d) Constant potential curve at 1.6 V vs. RHE

    图  4  (a)Pt、BC和F-BC-850在不同电流密度下的能耗;(b)F-BC-450、F-BC-650和F-BC-850在不同电流密度下的能耗

    Figure  4  (a) Energy consumption of Pt, BC, and F-BC-850 at different current densities; (b) Energy consumption of F-BC-450, F-BC-650, and F-BC-850 at different current densities

    图  5  (a)不同电流密度下BC/F-BC-850/Pt电解产氢速率;(b)在50 mA/cm2下,F-BC-850电极上H2的产生量和FE随时间的变化;(c)在50 mA/cm2下,BC和F-BC-850的气相色谱测试

    Figure  5  (a) Hydrogen production rate of BC/F-BC-850/Pt electrolysis under different current densities; (b) Production amount and FE of H2 as a function of time at 50 mA/cm2 over F-BC-850 electrode; (c) GC test of BC/F-BC-850 at 50 mA/cm2

    图  6  不同样品的SEM图像

    Figure  6  SEM images of different samples

    (a): BC; (b): F-BC-850; (c): Element mapping diagram of BC (C, O); (d): Element mapping diagram of F-BC-850 (C, O, F).

    图  7  不同温度下改性生物炭TG曲线

    Figure  7  TG curves of modified biochar at different temperatures

    图  8  (a)F-BC-850催化剂电解前后的XPS谱;(b):F-BC-850电解前后F1s光谱的XPS光谱;(c)F-BC-850电解前后F 1s各化学键含量

    Figure  8  (a) XPS spectra of the F-BC-850 catalyst under before and after electrolysis; (b) XPS spectra of F 1s spectra of F-BC-850 under before and after electrolysis; (c) Content of F 1s chemical bonds in before and after F-BC-850 electrolysis

    图  9  碳氧化反应机理图

    Figure  9  Mechanism diagram of carbon oxidation reaction

    表  1  生物炭的元素分析

    Table  1  Element analysis of biochar %

    Catalystselemental analysis
    CadHadNadOadSt,ad
    BC87.920.860.868.740.68
    F-BC-85090.940.950.875.930.44
    Note: ad is air dry basis.
    下载: 导出CSV
  • [1] LIU W, CUI Y, DENG Y L, et al. High efficiency hydrogen evolution from native biomass electrolysis[J]. Energy Environ Sci,2016,9:467. doi: 10.1039/C5EE03019F
    [2] 安攀, 张庆慧, 杨状等. 双碳目标下太阳能制氢技术的研究进展[J]. 化学学报,2022,80(12):1629−1642.
    [3] DU Y Y, YING Z, ZHENG X Y, et al. Correlating electrochemical biochar oxidation with electrolytes during biochar-assisted water electrolysis for hydrogen production[J]. Fuel, 20203, 339, 126957.
    [4] KANG J H, Y K Y, J J H, et al. Meso-pore generating P doping for efficient photoelectrochemical water splitting[J]. Nano Energy, 20203, 107, 108090.
    [5] LI D, QIN Y Y, SU Y Q, et al. Dense Crystalline–amorphous interfacial sites for enhanced electrocatalytic oxygen evolution[J]. Adv Funct Mater,2022,32(7):2107056. doi: 10.1002/adfm.202107056
    [6] SUN Y K, SUN W Y, M Alan, et al. Surface reconstruction, doping and vacancy engineering to improve the overall water splitting of CoP nanoarrays[J]. Nano Res,2023,16(1):228−238. doi: 10.1007/s12274-022-4702-y
    [7] LIN Q, GUO D Y, ZHOU L, et al. Tuning the interface of Co1-xS/Co (OH) F by atomic replacement strategy toward high-performance electrocatalytic oxygen evolution[J]. ACS Nano,2022,16(9):15460−15470. doi: 10.1021/acsnano.2c07588
    [8] HU C G, DAI L M. Multifunctional carbon-based metal-free electrocatalysts for simultaneous oxygen reduction, oxygen evolution, and hydrogen evolution[J]. Adv Mater,2017,29:1604942. doi: 10.1002/adma.201604942
    [9] MONTOYA J H, SEITZ L C, CHAKTHRANONT P, et al. Materials for solar fuels and chemicals[J]. Nat Mater,2017,16:70−81. doi: 10.1038/nmat4778
    [10] DING H, LIU H F, WU C Z, et al. Structural transformation of heterogeneous materials for electrocatalytic oxygen evolution reaction[J]. Chem Rev,2021,121:13174−13212. doi: 10.1021/acs.chemrev.1c00234
    [11] 向康, 孙志刚, 贾杰, 等. Fe3+辅助煤浆氧化制氢研究[J]. 燃料化学学报,2016,44(5):621−627.
    [12] YING Z, GENG Z, ZHENG X Y, et al. Improving water electrolysis assisted by anodic biochar oxidation for clean hydrogen production[J]. Energy,2022,238:121793. doi: 10.1016/j.energy.2021.121793
    [13] DU Y Y, YING Z, ZHENG X Y, et al. Efficient anodic biochar oxidation over three-dimensional self-support nickel-iron nanosheet on nickel foam in biochar-assisted water electrolysis for hydrogen production[J]. Int J Hydrogen Energy,2023,48(3):894−908. doi: 10.1016/j.ijhydene.2022.10.004
    [14] COUGHLIN R W, FAROOQUE M. Hydrogen production from coal, water and electrons[J]. Nature,1979,279(5711):301−303. doi: 10.1038/279301a0
    [15] SENFTLE F E, PATTON K M, HEARD I. Electrolytic oxidation of anthracite[J]. Fuel,1981,60(12):1131−1136. doi: 10.1016/0016-2361(81)90066-1
    [16] WANG J, JIANG M Q, YAO Y H, et al. Steam gasification of coal char catalyzed by K2CO3 for enhanced production of hydrogen without formation of methane[J]. Fuel,2009,88:1572−1579. doi: 10.1016/j.fuel.2008.12.017
    [17] PATIL P, ABREU Y D, BOTTE G G. Electrooxidation of coal slurries on different electrode materials[J]. J Power Sources,2006,158:368−377. doi: 10.1016/j.jpowsour.2005.09.033
    [18] HUANG Y M, ZHOU W, XIE L, et al. Edge and defect sites in porous activated coke enable highly efficient carbon-assisted water electrolysis for energy-saving hydrogen production[J]. Renew Energy,2022,195:283−292. doi: 10.1016/j.renene.2022.06.037
    [19] GE L, GONG X Z, WANG Z, et al. Insight of anode reaction for CWS (coal water slurry) electrolysis for hydrogen production[J]. Energy,2016,96:372−382. doi: 10.1016/j.energy.2015.12.077
    [20] FAN X-Z, PANG Q-Q, YI S-S, et al. Intrinsic-structural-modulated carbon cloth as efficient electrocatalyst for water oxidation[J]. Appl Catal B: Environ. Energy,2021,292:120152. doi: 10.1016/j.apcatb.2021.120152
    [21] KONG L C, LI Y, PENG C, et al. Defective nano-structure regulating C-F bond for lithium/fluorinated carbon batteries with dual high-performance[J]. Nano Energy,2022,104:107905. doi: 10.1016/j.nanoen.2022.107905
    [22] PAN B, HU C-M, BAI L, et al. Basicity-engineered graphite fluoride functionalization and beyond: An unusual reaction between ultraweak nucleophile and ultra strong C−F bonds[J]. Adv Funct Mater,2019,29:1906076. doi: 10.1002/adfm.201906076
    [23] KIM J, ZHOU R F, MURAKOSHI K, et al. Advantage of semi-ionic bonding in fluorine-doped carbon materials for the oxygen evolution reaction in alkaline media[J]. RSC Adv,2018,8(26):14152−14156. doi: 10.1039/C8RA01636D
    [24] ZHANG T, WANG H H, ZHANG J T, et al. Carbon charge population and oxygen molecular transport regulated by program-doping for highly efficient 4e-ORR[J]. Chem Eng J,2022,444:136560. doi: 10.1016/j.cej.2022.136560
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  11
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-11
  • 修回日期:  2024-05-18
  • 录用日期:  2024-05-21
  • 网络出版日期:  2024-07-08

目录

    /

    返回文章
    返回