留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温等离子体协同Ni基催化剂重整焦油研究进展

胡锦超 常甜 肖明艳 张甜 何雪

胡锦超, 常甜, 肖明艳, 张甜, 何雪. 低温等离子体协同Ni基催化剂重整焦油研究进展[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60475-5
引用本文: 胡锦超, 常甜, 肖明艳, 张甜, 何雪. 低温等离子体协同Ni基催化剂重整焦油研究进展[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60475-5
HU Jinchao, CHANG Tian, XIAO Mingyan, ZHANG Tian, HE Xue. Non-thermal plasma-catalytic reforming of tar over Ni-based catalysts[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60475-5
Citation: HU Jinchao, CHANG Tian, XIAO Mingyan, ZHANG Tian, HE Xue. Non-thermal plasma-catalytic reforming of tar over Ni-based catalysts[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60475-5

低温等离子体协同Ni基催化剂重整焦油研究进展

doi: 10.1016/S1872-5813(24)60475-5
基金项目: 国家自然科学基金资助项目(22208204),电力设备电气绝缘国家重点实验室资助项目(EIPE23213),中国博士后科学基金项目(2022M722015),陕西省自然科学基础研究计划资助项目(2022JQ-101),陕西省创新能力支撑计划(2024WZ-YBXM-18),陕西省博士后科研项目资助
详细信息
    通讯作者:

    Tel: 15102955114, E-mail: changtian@sust.edu.cn

  • 中图分类号: X7,TQ

Non-thermal plasma-catalytic reforming of tar over Ni-based catalysts

Funds: The project was supported by National Natural Science Foundation of China (22208204), State Key Laboratory of Electrical Insulation and Power Equipment (EIPE23213), China Postdoctoral Science Foundation (2022M722015), Natural Science Basic Research Program of Shaanxi (2022JQ-101), Innovation Capability Support Program of Shaanxi (2024WZ-YBXM-18), Postdoctoral Research Project of Shaanxi Province for their financial support.
  • 摘要: 生物质气化制合成气(H2/CO)过程中伴随副产物焦油的产生,会引发环境污染问题和阻碍气化技术发展。低温等离子体与镍基催化剂结合能够利用等离子体的低温反应及催化剂的高选择性优势,将焦油定向重整转化为合成气。但镍颗粒在重整过程中会形成积碳沉积易导致催化剂失活,所以设计和改性催化剂提高其抗积碳性能成为解决催化剂失活问题的关键。本文综述了近年来低温等离子体催化重整焦油体系内镍基催化剂失活原理以及催化剂的设计和改性以提高其抗积碳性能、低温等离子体重整焦油反应器类型及其机理、低温等离子体与催化剂的协同作用等方面的研究进展,并对协同体系重整焦油未来发展方向进行展望。本论文为低温等离子体催化重整焦油体系内镍基催化剂的设计与开发提供了参考依据。
  • 图  1  NTP 与催化剂的结合方式,(a)催化剂作反应器壁涂层;(b)催化剂作材料层;(c)催化剂作填充床[5](已从 Elsevier出版社获得版权)

    Figure  1  The combination method of NTP and catalyst, (a) catalyst as the reactor wall coating; (b) catalyst as a material layer; (c) catalyst as a packed bed[5] (with permission from Elsevier Publication)

    图  2  文章框架图

    Figure  2  Frame structure of this paper

    图  3  不同反应温度下催化剂表面生成积碳的种类[8](已从 Elsevier出版社获得版权)

    Figure  3  Types of carbon deposits generated on the catalyst surface at different temperature [8](with permission from Elsevier Publication)

    图  4  NTP 的结构和放电图

    Figure  4  Structure and discharge imagine of NTP

    (a): GAD; (b): CD; (c): DBD; (d): MW.

    图  5  低温等离子体催化重整焦油机理[7375](已从 Elsevier出版社获得版权)

    Figure  5  Mechanism of non-thermal plasma-catalytic reforming of tar[7375](with permission from Elsevier Publication)

    图  6  等离子体催化体系示意图[5](已从 Elsevier出版社获得版权)

    Figure  6  Schematic diagram of plasma-catalysis system[5](with permission from Elsevier Publication)

    图  7  等离子体对Ni-Ce-MCM-41的影响:(a)、(b)Ni-Ce-MCM-41的粒径尺寸;(c)、(d)等离子体处理后Ni-Ce-MCM-41的粒径分布;(e)电子迁移 [78](已从Elsevier 出版社获得版权)

    Figure  7  Influence of plasma on Ni-Ce-MCM-41:(a), (b) particle size of Ni-Ce-MCM-41; (c), (d) particle size of Ni-Ce-MCM-41 after plasma treatment; (e) electronic migration [78] (with permission from Elsevier Publication)

    图  8  未添加催化剂(a)和加入催化剂(b)的电流电压图;(c)李萨如图形[85](已从 Elsevier出版社获得版权)

    Figure  8  (a) Current-voltage diagram without catalyst (a) and (b) with catalyst; (3) Lissajou figure[85] (with permission from Elsevier Publication)

    图  9  不同孔径下的电势分布: (a)10 μm; (b)50 μm; (c)400 μm[87](已从 Elsevier出版社获得版权)

    Figure  9  Potential-distribution under different pore sizes: (a) 10 μm; (b) 50 μm; (c) 400 μm[87] (with permission from Elsevier Publication)

    表  1  焦油蒸汽重整催化剂

    Table  1  Catalysts of steam tar reforming

    Tar compound Catalyst Preparation method Temperature
    (℃)
    S/C Gas flow
    (mL/min)
    Conversion
    (%)
    Reference
    Toluene Ni/Hydrotalcite Co-precipitation 450 2 50 100 [42]
    Ni/Dolomite Co-impregnation 800 3 100 76 [21]
    Ni/ZSM-5 Wet impregnation 600 2 83 81 [43]
    Ni/CaO Co-precipitation 500 2 150 70 [23]
    Benzene Ni/TiO2 Wet impregnation 800 1 500 96 [44]
    Ni/HAP Wet impregnation 400 1 100 90 [24]
    Ce-Ni/HAP Wet impregnation 400 1 100 95 [45]
    Phenol Fe-Ni/Olivine Wet impregnation 850 1 200 85 [11]
    La-Ni/Al2O3 Impregnation 600 2 200 98 [46]
    Naphthalene Ni/Al2O3 Impregnation 300 1.5 3000 75 [47]
    下载: 导出CSV
  • [1] BARBARIAS I, LOPEZ G, ARTETXE M, et al. Valorisation of different waste plastics by pyrolysis and in-line catalytic steam reforming for hydrogen production[J]. Energy Convers Manage,2018,156:575−584. doi: 10.1016/j.enconman.2017.11.048
    [2] SHEN Y F, ZHAO P T, SHAO Q F, et al. In situ catalytic conversion of tar using rice husk char/ash supported nickel–iron catalysts for biomass pyrolytic gasification combined with the mixing-simulation in fluidized-bed gasifier[J]. Appl Energ,2015,160:808−819. doi: 10.1016/j.apenergy.2014.10.074
    [3] CHEN Y, LUO Y H, WU W G, et al. Experimental investigation on tar formation and destruction in a lab-scale two-stage reactor[J]. Energ Fuel,2009,23(9):4659−4667. doi: 10.1021/ef900623n
    [4] CAO J P, REN J, ZHAO X Y, et al. Effect of atmosphere on carbon deposition of Ni/Al2O3 and Ni-loaded on lignite char during reforming of toluene as a biomass tar model compound[J]. Fuel,2018,217:515−521. doi: 10.1016/j.fuel.2017.12.121
    [5] VAN D J, DEWULF J, LEYS C, et al. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review[J]. Appl Catal B: Environ,2008,78(3-4):324−333. doi: 10.1016/j.apcatb.2007.09.035
    [6] XU R Y, KONG X Z, ZHANG H, et al. Destruction of gasification tar over Ni catalysts in a modified rotating gliding arc plasma reactor: Effect of catalyst position and nickel loading[J]. Fuel,2021,289:119742. doi: 10.1016/j.fuel.2020.119742
    [7] CHEN F Y, WU C F, DONG L S, et al. Characteristics and catalytic properties of Ni/CaAlOx catalyst for hydrogen-enriched syngas production from pyrolysis-steam reforming of biomass sawdust[J]. Appl Catal B: Environ,2016,183:168−175. doi: 10.1016/j.apcatb.2015.10.028
    [8] OCHOA A, ARREGI A, AMUTIO M, et al. Coking and sintering progress of a Ni supported catalyst in the steam reforming of biomass pyrolysis volatiles[J]. Appl Catal B: Environ,2018,233:289−300. doi: 10.1016/j.apcatb.2018.04.002
    [9] WU C F, DONG L S, ONWUDILI J, et al. Effect of Ni Particle Location within the Mesoporous MCM-41 Support for Hydrogen Production from the Catalytic Gasification of Biomass[J]. ACS Sustainable Chem Eng,2013,19:1083−1091.
    [10] HE L M, HU S, JIANG L, et al. Carbon nanotubes formation and its influence on steam reforming of toluene over Ni/Al2O3 catalysts: Roles of catalyst supports[J]. Fuel Process Technol,2018,176:7−14. doi: 10.1016/j.fuproc.2018.03.007
    [11] MENG J G, ZHAO Z L, WANG X B, et al. Comparative study on phenol and naphthalene steam reforming over Ni-Fe alloy catalysts supported on olivine synthesized by different methods[J]. Energy Convers Manage,2018,168:60−73. doi: 10.1016/j.enconman.2018.04.112
    [12] KIM S C, SHIM W G. Catalytic combustion of VOCs over a series of manganese oxide catalysts[J]. Appl Catal B: Environ,2010,98(3-4):180−185. doi: 10.1016/j.apcatb.2010.05.027
    [13] WAGNER T, MARIEN J, DUSCHER G. Cu, Nb and V on (110) TiO2 (rutile): epitaxy and chemical reactions[J]. Thin Solid Films,2001,398-399:419−426. doi: 10.1016/S0040-6090(01)01351-7
    [14] CHEN M Q, LI X J, WANG Y S, et al. Hydrogen generation by steam reforming of tar model compounds using lanthanum modified Ni/sepiolite catalysts[J]. Energy Convers Manage,2019,184:315−326. doi: 10.1016/j.enconman.2019.01.066
    [15] SUTTON D, KELLEHER B, DOYLE A, et al. Investigation of nickel supported catalysts for the upgrading of brown peat derived gasification products[J]. Bioresour Technol,2001,802:111−116.
    [16] LIU Q C, XIONG Z, SYED S A, et al. Effect of the pre-reforming by Fe/bio-char catalyst on a two-stage catalytic steam reforming of bio-oil[J]. Fuel,2019,239:282−289. doi: 10.1016/j.fuel.2018.11.029
    [17] YAO X H, ZHANG J, LIANG X S, et al. Plasma-catalytic removal of toluene over the supported manganese oxides in DBD reactor: Effect of the structure of zeolites support[J]. Chemosphere,2018,208:922−930. doi: 10.1016/j.chemosphere.2018.06.064
    [18] 刘粤, 车庆丰, 易为, 等. 微介孔Ni/ZSM-5分子筛对甲苯催化重整的影响[J]. 可再生能源,2021,39(4):427−433. doi: 10.3969/j.issn.1671-5292.2021.04.001

    Liu Yue, Che Qingfeng, Yi Wei. Effect of micro-mesoporous Ni/ZSM-5 zeolites on catalytic reforming of toluene[J]. Renewable Energy Resources.,2021,39(4):427−433. doi: 10.3969/j.issn.1671-5292.2021.04.001
    [19] GAO NI B, CHEN K L, LAI X Y, et al. Catalytic steam reforming of real tar under high-efficiency Ni/USY catalyst for H2 production[J]. Fuel,2021,306:121676. doi: 10.1016/j.fuel.2021.121676
    [20] DEVI L, PTASINSKI K J, JANSSEN FRANS J G, et al. Catalytic decomposition of biomass tars: use of dolomite and untreated olivine[J]. Renew Energy,2005,30(4):565−587. doi: 10.1016/j.renene.2004.07.014
    [21] HU G, XU S P, LI S G, et al. Steam gasification of apricot stones with olivine and dolomite as downstream catalysts[J]. Fuel Process Technol,2006,87(5):375−382. doi: 10.1016/j.fuproc.2005.07.008
    [22] BRACCIALE M P, DE C B, DE F P, et al. New synthetic route for the production of mayenite support to enhance Ni resistance to coke deposition in the reforming of tar model compounds[J]. Appl Catal A: Gen,2019,574:48−59. doi: 10.1016/j.apcata.2019.01.029
    [23] LI D L, KOIKE M, WANG L, et al. Regenerability of hydrotalcite-derived nickel-iron alloy nanoparticles for syngas production from biomass tar[J]. ChemSusChem,2014,7(2):510−522. doi: 10.1002/cssc.201300855
    [24] PAN W, MENG J G, GU T T, et al. Plasma-catalytic steam reforming of benzene as a tar model compound over Ni-HAP and Ni-γAl2O3 catalysts: Insights into the importance of steam and catalyst support[J]. Fuel,2023,339:127327. doi: 10.1016/j.fuel.2022.127327
    [25] ASHOK J, KATHIRASER Y, ANG M L, et al. Bi-functional hydrotalcite-derived NiO–CaO–Al2O3 catalysts for steam reforming of biomass and/or tar model compound at low steam-to-carbon conditions[J]. Appl Catal B: Environ,2015,172-173:116−128. doi: 10.1016/j.apcatb.2015.02.017
    [26] KONG M, FEI J H, WANG S, et al. Influence of supports on catalytic behavior of nickel catalysts in carbon dioxide reforming of toluene as a model compound of tar from biomass gasification[J]. Bioresource Technology,2011,102(2):2004−2008. doi: 10.1016/j.biortech.2010.09.054
    [27] REN J, CAO J P, ZHAO X Y, et al. Recent progress and perspectives of catalyst design and downstream integration in biomass tar reforming[J]. Chem Eng J,2022,429:132316. doi: 10.1016/j.cej.2021.132316
    [28] SANTAMARIA L, ARREGI A, LOPEZ G, et al. Effect of La2O3 promotion on a Ni/Al2O3 catalyst for H2 production in the in-line biomass pyrolysis-reforming[J]. Fuel,2020,262:116593. doi: 10.1016/j.fuel.2019.116593
    [29] LIU L N, ZHANG Z K, DAS S, et al. Reforming of tar from biomass gasification in a hybrid catalysis-plasma system: A review[J]. Appl Catal B: Environ,2019,250:250−272. doi: 10.1016/j.apcatb.2019.03.039
    [30] OEMAR U, ANG M L, CHIN Y C. , et al. Role of lattice oxygen in oxidative steam reforming of toluene as a tar model compound over Ni/La0.8Sr0.2AlO3 catalyst[J]. Catal Sci Technol,2015,5(7):3585−3597. doi: 10.1039/C5CY00412H
    [31] XU W C, CHEN B X, JIANG X D, et al. Effect of calcium addition in plasma catalysis for toluene removal by Ni/ZSM-5 : Acidity/basicity, catalytic activity and reaction mechanism[J]. J Hazard Mater, 2020, 387: 122004.
    [32] CONSTANTINOU D A, EFSTATHIOU A M. Low-temperature purification of gas streams from phenol by steam reforming over novel supported-Rh catalysts[J]. Appl Catal B: Environ,2010,96(3-4):276−289. doi: 10.1016/j.apcatb.2010.02.007
    [33] ASHOK J, DEWANGAN N, DAS S, et al. Recent progress in the development of catalysts for steam reforming of biomass tar model reaction[J]. Fuel Process Technol,2020,199:106252. doi: 10.1016/j.fuproc.2019.106252
    [34] LEE J, LI R, JANIK M, et al. Rare Earth/Transition Metal Oxides for Syngas Tar Reforming - A Model Compound Study[J]. Ind Eng Chem Res,2018,57(18):6131−6140. doi: 10.1021/acs.iecr.8b00682
    [35] ASHOK J, KAWI S. Nickel-Iron Alloy Supported over Iron–Alumina Catalysts for Steam Reforming of Biomass Tar Model Compound[J]. ACS Catal,2014,4(1):289−301. doi: 10.1021/cs400621p
    [36] NAHAR G, DUPONT V, TWIGG M, et al. Feasibility of hydrogen production from steam reforming of biodiesel (FAME) feedstock on Ni-supported catalysts[J]. Appl Catal B: Environ,2015,168-169:228−242. doi: 10.1016/j.apcatb.2014.12.036
    [37] LI D L, KOIKE M, CHEN J H, et al. Preparation of Ni–Cu/Mg/Al catalysts from hydrotalcite-like compounds for hydrogen production by steam reforming of biomass tar[J]. Int J Hydrog Energy,2014,39(21):10959−10970. doi: 10.1016/j.ijhydene.2014.05.062
    [38] WANG L, LI D L, KOIKE M, et al. Catalytic performance and characterization of Ni–Co catalysts for the steam reforming of biomass tar to synthesis gas[J]. Fuel,2013,112:654−661. doi: 10.1016/j.fuel.2012.01.073
    [39] LI G H, HU L J, HILL J M. Comparison of reducibility and stability of alumina-supported Ni catalysts prepared by impregnation and co-precipitation[J]. Appl Catal A: Gen,2006,301(1):16−24. doi: 10.1016/j.apcata.2005.11.013
    [40] TSODIKOV M V, ELLERT O G, NIKOLAEV S A, et al. The role of nanosized nickel particles in microwave-assisted dry reforming of lignin[J]. Cheml Eng J,2017,309:628−637. doi: 10.1016/j.cej.2016.10.031
    [41] LUO X, HONG Y, WANG F C, et al. Development of nano NixMgyO solid solutions with outstanding anti-carbon deposition capability for the steam reforming of methanol[J]. Appl Catal B: Environ,2016,194:84−97. doi: 10.1016/j.apcatb.2016.04.031
    [42] LI D, WAMH L, KOILKE M, et al. Steam reforming of tar from pyrolysis of biomass over Ni/Mg/Al catalysts prepared from hydrotalcite-like precursors, Appl. Catal. B Environ, 2011, 102: 528–538.
    [43] HEO D H, LEE R, HWANG J H, et al. The effect of addition of Ca, K and Mn over Ni-based catalyst on steam reforming of toluene as model tar compound[J]. Catal Today,2016,265:95−102. doi: 10.1016/j.cattod.2015.09.057
    [44] CHEN J H, TAMURA M, NAKAGAWA Y, et al. Promoting effect of trace Pd on hydrotalcite-derived Ni/Mg/Al catalyst in oxidative steam reforming of biomass tar[J]. Appl Catal B: Environ,2015,179:412−421. doi: 10.1016/j.apcatb.2015.05.042
    [45] MENG J G, HENG Chen, XIE Hao, et al. Plasma-catalytic benzene steam reforming over Ce doped Ni-HAP catalysts: Insights into enhanced oxygen activity[J]. Chem Eng J,2024,483:149141−149141. doi: 10.1016/j.cej.2024.149141
    [46] FAROOQ A, MOOGI S, JANG S H, et al. Linear low-density polyethylene gasification over highly active Ni/CeO2-ZrO2 catalyst for enhanced hydrogen generation[J]. J Ind Eng Chem,2021,94:336−342. doi: 10.1016/j.jiec.2020.11.005
    [47] OEMAR U, ANG M L, HEE W F, et al. Perovskite LaxM1−xNi0.8Fe0.2O3 catalyst for steam reforming of toluene: Crucial role of alkaline earth metal at low steam condition[J]. Appl Catal B: Environ,2014,148-149:231−242. doi: 10.1016/j.apcatb.2013.10.001
    [48] YU S, LIANG Y, SUN S, et al. Vehicle exhaust gas clearance by low temperature plasma-driven nano-titanium dioxide film prepared by radiofrequency magnetron sputtering[J]. PloS one,2013,8(4):e59974. doi: 10.1371/journal.pone.0059974
    [49] TOSI P, ASCENZI D, FRANCESCHI P, et al. Ion chemistry in gaseous discharges at atmospheric pressure[J]. Plasma Sources Sci Technol.,2009,18(3):034005. doi: 10.1088/0963-0252/18/3/034005
    [50] LIU L N, WANG Q, AHMAD S, et al. Steam reforming of toluene as model biomass tar to H2-rich syngas in a DBD plasma-catalytic system[J]. J Energy Inst,2018,91(6):927−939. doi: 10.1016/j.joei.2017.09.003
    [51] GEORGE A, SHEN B X, CRAVEN M, et al. A Review of Non-Thermal Plasma Technology: A novel solution for CO2 conversion and utilization[J]. Renew Sustain Energy Rev,2021,135:109702. doi: 10.1016/j.rser.2020.109702
    [52] XU B, XIE J J, LIU H C, et al. Experimental and kinetic modeling study of tar partial oxidative reforming by dielectric barrier discharge plasma using toluene as a model compound[J]. Chem Eng J,2024,479:147533. doi: 10.1016/j.cej.2023.147533
    [53] SALEEM F, ZHANG K, HARVEY A. Removal of Toluene as a Tar Analogue in a N2 Carrier Gas Using a Non-thermal Plasma Dielectric Barrier Discharge Reactor[J]. Energy & Fuels,2019,33(1):389−396.
    [54] TAO K, OHTA N, LIU G Q, et al. Plasma enhanced catalytic reforming of biomass tar model compound to syngas[J]. Fuel,2013,104:53−57. doi: 10.1016/j.fuel.2010.05.044
    [55] NAIR S A, YAN K, PEMEN A M, et al. Tar Removal from Biomass-Derived Fuel Gas by Pulsed Corona Discharges. A Chemical Kinetic Study[J]. Ind Eng Chem Res,2004,43(7):1649−1658. doi: 10.1021/ie034066p
    [56] 徐彬, 谢建军, 阴秀丽, 等. 流光电晕裂解焦油模型化合物的动力学模拟[J]. 太阳能学报,2018,39(11):3178−3184.

    Xu Bin, Xie Jianjun, Yin Xiuli, et al. Kinetic Study of Tar Model Compounds Cracking by Streamer Corona Discharges[J]. Acta Energiae Solaris Sinica,2018,39(11):3178−3184.
    [57] SEUTCHA R L, GEORGES K Y, ACAYANKA E, et al. Plasma synthesis of various polymorphs of tungsten trioxide nanoparticles using gliding electric discharge in humid air: characterization and photocatalytic properties[J]. Plasma Sci Technol,2023,25(12):125502. doi: 10.1088/2058-6272/ace235
    [58] MEI D H, LIU S Y, YANIK J L, et al. Plasma-Catalytic Reforming of Naphthalene and Toluene as Biomass Tar over Honeycomb Catalysts in a Gliding Arc Reactor[J]. ACS Sustain Chem Eng,2022,10(27):8958−8969. doi: 10.1021/acssuschemeng.2c02495
    [59] LIU S Y, MEI D H, WANG L, et al. Steam reforming of toluene as biomass tar model compound in a gliding arc discharge reactor[J]. Chem Eng J,2017,307:793−802. doi: 10.1016/j.cej.2016.08.005
    [60] ONG M Y, NOMANBHAY S, KUSUMO F, et al. Application of microwave plasma technology to convert carbon dioxide (CO2) into high value products: A review[J]. J Clean Prod,2022,336:130447. doi: 10.1016/j.jclepro.2022.130447
    [61] PETITPAS G, ROLLIER J D, DARMON A, et al. A comparative study of non-thermal plasma assisted reforming technologies[J]. Int J Hydrogen Energy,2007,32(14):2848−2867. doi: 10.1016/j.ijhydene.2007.03.026
    [62] JAMRÓZ P, KORDYLEWSKI W, WNUKOWSKI M. Microwave plasma application in decomposition and steam reforming of model tar compounds[J]. Fuel Process Technol,2018,169:1−14. doi: 10.1016/j.fuproc.2017.09.009
    [63] MEDEIROS H, PILATOV A, NOZHENKO O, et al. Microwave Air Plasma Applied to Naphthalene Thermal Conversion[J]. Energy & Fuels,2016,30(2):1510−1516.
    [64] ZHU F S, ZHANG H, YANG H P, et al. Plasma reforming of tar model compound in a rotating gliding arc reactor: Understanding the effects of CO2 and H2O addition[J]. Fuel,2020,259:116271. doi: 10.1016/j.fuel.2019.116271
    [65] LU M J, HUANG R, WU J L, et al. On the performance and mechanisms of toluene removal by FeOx/SBA-15-assisted non-thermal plasma at atmospheric pressure and room temperature[J]. Catal Today,2015,242:274−286. doi: 10.1016/j.cattod.2014.07.026
    [66] YU H, HU W, HE J, et al. Decomposition efficiency and aerosol by-products of toluene, ethyl acetate and acetone using dielectric barrier discharge technique[J]. Chemosphere,2019,237:124439. doi: 10.1016/j.chemosphere.2019.124439
    [67] HU S, LIMO H, WANG Y, et al. Effects of oxygen species from Fe addition on promoting steam reforming of toluene over Fe–Ni/Al2O3 catalysts[J]. Int J Hydrogen Energy,2016,41:17967−17975. doi: 10.1016/j.ijhydene.2016.07.271
    [68] SLIKBOER E, ACHARYA K, SOBOTA A, et al. Revealing Plasma-Surface Interaction at Atmospheric Pressure: Imaging of Electric Field and Temperature inside the Targeted Material[J]. Sci Rep,2020,10(1):2712. doi: 10.1038/s41598-020-59345-0
    [69] GUO F, JIANG L, TIAN H, et al. N2 RF-plasma-assisted preparation of small size Ni-Ce catalysts for dry reforming of methane with high activity and great coke-resistant performance[J]. Vacuum,2024,220:112784. doi: 10.1016/j.vacuum.2023.112784
    [70] MONTERO C, OCHOA A, CASTANO P, et al. Monitoring Ni0 and coke evolution during the deactivation of a Ni/La2O3–αAl2O3 catalyst in ethanol steam reforming in a fluidized bed[J]. J Catal,2015,331:181−192. doi: 10.1016/j.jcat.2015.08.005
    [71] KHOJA A H, TAHIR M, AMIN N A. Recent developments in non-thermal catalytic DBD plasma reactor for dry reforming of methane[J]. Energy Convers Manage,2019,183:529−560. doi: 10.1016/j.enconman.2018.12.112
    [72] SNOECKX R, BOGAERTS A. Plasma technology – a novel solution for CO2 conversion?[J]. Chem Soc Rev,2017,46(19):5805−5863. doi: 10.1039/C6CS00066E
    [73] BLIN SIMIAND N, TARDIVEAU P, RISACHER A, et al. Removal of 2‐heptanone by dielectric barrier discharges–the effect of a catalyst support[J]. Plasma Processes and Polymers,2005,2(3):256−2 doi: 10.1002/ppap.200400088
    [74] OWEN A E, LOUIS H, AGWAMBA E C, et al. Antihypotensive potency of p-synephrine: Spectral analysis, molecular properties and molecular docking investigation[J]. J Mol Struct,2023,1273:134233. doi: 10.1016/j.molstruc.2022.134233
    [75] GADKARI S, GU S. Influence of catalyst packing configuration on the discharge characteristics of dielectric barrier discharge reactors: A numerical investigation[J]. Phys Plasmas,2018,25(6):063513. doi: 10.1063/1.5030508
    [76] LIU S Y, MEI D H, NAHIL M A, et al. Hybrid plasma-catalytic steam reforming of toluene as a biomass tar model compound over Ni/Al2O3 catalysts[J]. Fuel Process Technol,2017,166:269−275. doi: 10.1016/j.fuproc.2017.06.001
    [77] LOENDERS B, MICHIELS R, BOGAERTS A. Is a catalyst always beneficial in plasma catalysis? Insights from the many physical and chemical interactions[J]. Journal Energy Chem, 2023, 85; 501-533.
    [78] ZHANG Y R, VAN LAER K, NEYTS E C, et al. Can plasma be formed in catalyst pores? A modeling investigation[J]. Appl Catal B: Environ,2016,185:56−67. doi: 10.1016/j.apcatb.2015.12.009
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  17
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-18
  • 修回日期:  2024-06-03
  • 录用日期:  2024-06-03
  • 网络出版日期:  2024-07-08

目录

    /

    返回文章
    返回