留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用固废煤矸石制备Fe/C/Mullite-基陶粒复合型吸波材料

王亚珂 朱保顺 力国民 梁丽萍

王亚珂, 朱保顺, 力国民, 梁丽萍. 利用固废煤矸石制备Fe/C/Mullite-基陶粒复合型吸波材料[J]. 燃料化学学报(中英文), 2021, 49(2): 238-246. doi: 10.19906/j.cnki.JFCT.2021014
引用本文: 王亚珂, 朱保顺, 力国民, 梁丽萍. 利用固废煤矸石制备Fe/C/Mullite-基陶粒复合型吸波材料[J]. 燃料化学学报(中英文), 2021, 49(2): 238-246. doi: 10.19906/j.cnki.JFCT.2021014
WANG Ya-ke, ZHU Bao-shun, LI Guo-min, LIANG Li-ping. Preparation of Fe/C/Mullite-based ceramsite composite absorbing materials by recycling solid waste coal gangue[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 238-246. doi: 10.19906/j.cnki.JFCT.2021014
Citation: WANG Ya-ke, ZHU Bao-shun, LI Guo-min, LIANG Li-ping. Preparation of Fe/C/Mullite-based ceramsite composite absorbing materials by recycling solid waste coal gangue[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 238-246. doi: 10.19906/j.cnki.JFCT.2021014

利用固废煤矸石制备Fe/C/Mullite-基陶粒复合型吸波材料

doi: 10.19906/j.cnki.JFCT.2021014
基金项目: 山西省研究生优秀创新项目(2020SY415),国家自然科学基金(51802212),山西省自然科学基金(201801D221119)和山西省高等学校科技创新项目(2019L0617)资助
详细信息
    通讯作者:

    E-mail:ligm@tyust.edu.cn

    liangliping@tyust.edu.cn

  • 中图分类号: TB34

Preparation of Fe/C/Mullite-based ceramsite composite absorbing materials by recycling solid waste coal gangue

Funds: The project was supported by Shanxi Postgraduate Innovation Project (2020SY415), the National Natural Science Foundation of China (51802212), the Natural Science Foundation of Shanxi Province (201801D221119), the Scientific and Technological Innovation Programs of High Education Institutions in Shanxi (2019L0617)
  • 摘要: 采用煤矸石与铝矾土作原料制备莫来石(Mullite)基陶粒;以陶粒为载体、硝酸铁为Fe源、葡萄糖为C源,借助液相合成技术结合氩气气氛中900 ℃焙烧制备Fe/C/Mullite-基陶粒复合型吸波材料。研究发现,在该颗粒状复合材料中,具有一定石墨化程度的C以层状覆盖于陶粒表面,Fe微粒较为均匀地嵌在C层的网格内。Fe微粒与石墨化C层引起的电导极化以及各组元间接触引起的界面极化均会产生明显的介电损耗,赋予材料优良的微波吸收性能。当初始溶液中硝酸铁浓度为0.1 mol/L时,样品FeCM-0.1在14.6 GHz频率处的反射损耗达到最低值−13.9 dB,有效带宽为3.6 GHz(对应的测试涂层厚度为2 mm)。
  • 图  1  陶粒与样品FeCM-X的XRD衍射谱图(a),样品FeCM-X的拉曼散射光谱谱图(b)

    Figure  1  XRD patterns of the ceramsite and the FeCM-X composites (a), Raman spectra of the FeCM-X composites (b)

    图  2  煤矸石陶粒 (a)、水热焦炭/Fe2O3/陶粒 (b)、样品FeCM-0.1 (c)与(d)的SEM照片

    Figure  2  SEM images of the ceramsite (a), hydro-char/Fe2O3/creamsite (b), FeCM-0.1 composite (c) and (d)

    图  3  样品FeCM-0.1的元素分布图

    Figure  3  Elemental mapping images of the FeCM-0.1 composite

    (a): Si; (b): Al; (c): O; (d): C; (e): Fe

    图  4  样品FeCM-X的结构示意图

    Figure  4  Schematic illustration of the FeCM-X composite

    图  5  样品FeCM-0.1在室温下的磁滞回线

    Figure  5  Hysteresis loop of the FeCM-0.1 sample at room temperature

    图  6  样品在2.0-18.0 GHz的微波反射损耗曲线

    Figure  6  The reflection loss curves of the samples

    (a): ceramsite; (b): FeCM-0.04; (c): FeCM-0.1; (d): FeCM-0.2

    图  7  煤矸石陶粒与样品FeCM-X的复介电常数(a),复磁导率(b),Cole-Cole曲线(c)与(d)

    Figure  7  Frequency dependences of complex permittivity (a), permeability (b), Cole-Cole curves (c) and (d) for the ceramsite and the FeCM-X samples

    图  8  煤矸石陶粒与样品FeCM-X的衰减常数(a)与损耗因子(b)的频率依赖性

    Figure  8  Frequency dependences of the attenuation constant (a) and loss tangent (b) of the ceramsite and the FeCM-X composite

    表  1  煤矸石与铝矾土原料的化学组成

    Table  1  Chemical composition of the raw materials

    Raw materialContent w/%
    Al2O3SiO2Fe2O3TiO2CaOloss on ignition
    Coal gangue27.430.78.12.70.330.8
    Bauxite62.312.45.02.80.517.0
    下载: 导出CSV

    表  2  文献报道的Fe负载型复合材料的微波吸收性能

    Table  2  Microwave absorbing properties of the Fe-based composites in recent literatures

    AbsorberMatching frequency/GHzRLmin/dBCoating thickness /mmEAB/GHzRefs
    FeCPNFs11.68−26.12.03.0(10.2−13.2)[27]
    Fe/Fe3O4 composite12.3−24.62.05.0(1.0−15.1)[28]
    Fe/porous C17.2−29.52.54.3(13.7−18.0)[29]
    C/Fe-Cu hybrids17.5−19.851.22.7(15.3−18.0)[30]
    FeCM-0.114.6−13.92.03.6(13.0−16.6)this work
    下载: 导出CSV
  • [1] 王庆贺, 李喆, 周梅, 张玉琢. 自燃煤矸石骨料取代率对钢筋混凝土梁受弯性能的影响[J]. 建筑结构学报,2020,41(12):64−74.

    WANG Qing-he, LI Zhe, ZHOU Mei, ZHANG Yu-zhuo. Effects of spontaneous-combustion coal gangue aggregate replacement ratio on flexural behavior of reinforced concrete beams[J]. J Build Struct,2020,41(12):64−74.
    [2] 李文龙. 掺玻璃纤维粉煤灰煤矸石骨料混凝土强度与抗裂性能试验研究[J]. 建筑结构,2020,50(13):49−53.

    LI Wen-long. Experimental study on strength and crack resistance of coal gangue aggregate concrete mixed with glass fiber and fly ash[J]. Build Struct,2020,50(13):49−53.
    [3] 刘灏, 李青, 黄秉章, 黄榜彪, 李杰能, 王锐, 谢伟标, 梁晓前. 煤矸石烧结页岩砖材的耐久性研究[J]. 材料导报,2019,33(S2):229−232.

    LIU Hao, LI Qing, HUNG Bing-zhang, HUANG Bang-biao, LI Jie-neng, WANG Rui, XIE Wei-biao, LIANG Xiao-qian. Study on durability of sintered shale brick from coal gangue[J]. Mater Rev,2019,33(S2):229−232.
    [4] 孔静, 高鸿, 李岩, 王向轲, 张静静, 何端鹏, 吴冰, 邢焰. 电磁屏蔽机理及轻质宽频吸波材料的研究进展[J]. 材料导报,2020,34(9):9055−9063.

    KONG Jing, GAO Hong, LI Yan, WANG Xiang-ke, ZHANG Jing-jing, HE Duan-peng, WU Bing, XING Yan. Research progress of electromagnetic shielding mechanism and lightweight and broadband wave-absorbing materials[J]. Mater Rev,2020,34(9):9055−9063.
    [5] 陈雪刚, 叶瑛, 程继鹏. 电磁波吸收材料的研究进展[J]. 无机材料学报,2011,26(5):449−457. doi: 10.3724/SP.J.1077.2011.00449

    CHEN Xue-gang, YE Ying, CHENG Ji-peng. Research progress of electromagnetic wave absorbing materials with core-shell structure[J]. J Inorg Mater,2011,26(5):449−457. doi: 10.3724/SP.J.1077.2011.00449
    [6] ZHOU P P, WANG X K, WANG L X, ZHANG J, SONG Z, QIU X, YU M X, ZHANG Q T. Walnut shell-derived nanoporous carbon@Fe3O4 composites for outstanding microwave absorption performance[J]. J Alloy Compd,2019,805(15):1071−1080.
    [7] 尚楷, 武志红, 张路平, 王倩, 郑海康. 模板法制备MoSi2/竹炭复合材料及吸波性能[J]. 材料工程,2019,47(5):122−128.

    SHANG Kai, WU Zhi-hong, ZHANG Lu-ping, WANG Qian, ZHENG Hai-kang. Absorbing performance of MoSi2/BC composites using by bamboo charcoal template[J]. J Mater Eng,2019,47(5):122−128.
    [8] 何学敏, 钟伟, 都有为. 核壳结构磁性复合纳米材料的可控合成与性能[J]. 物理学报,2018,67(22):9−28+438.

    HE Xue-min, ZHONG Wei, DU You-wei. Controllable synthesis and performance of magnetic nanocomposites with core-shell structure[J]. Acta Phys Sin-Chem,2018,67(22):9−28+438.
    [9] 李贺, 陈开斌, 罗英涛, 孙丽贞, 杜娟. 纳米碳基复合吸波材料吸波机理及性能研究进展[J]. 材料导报,2019,33(S2):73−77.

    LI He, CHEN Kai-bin, LUO Ying-tao, SUN Li-zhen, DU Juan. Absorbing mechanism and progress of carbon-based electromagnetic wave absorbing nanocomposites[J]. Mater Rev,2019,33(S2):73−77.
    [10] SHAN G, YANG S H, WANG H Y, WANG G S, YIN P G. Excellent electromagnetic wave absorbing properties of two-dimensional carbon-based nanocomposite supported by transition metal carbides Fe3C[J]. Carbon,2020,162:438−444. doi: 10.1016/j.carbon.2020.02.031
    [11] WANG L N, JIA X L, LI Y F, YANG F, ZHANG L Q, LIU L P, REN X, YANG H T. Synthesis and microwave absorption property of flexible magnetic film based on graphene oxide/carbon nanotubes and Fe3O4 nanoparticles[J]. J Mater Chem A,2014,2(36):14940−14946. doi: 10.1039/C4TA02815E
    [12] WANG Z J, WU L N, ZHOU J G, CAI W, SHEN B Z, JIANG Z H. Magnetite nanocrystals on multiwalled carbon nanotubes as a synergistic microwave absorber[J]. J Phys Chem C,2013,117(10):5446−5452. doi: 10.1021/jp4000544
    [13] 康越, 原博, 马天, 楚增勇, 张政军. 基于石墨烯的电磁波损耗材料研究进展[J]. 无机材料学报,2018,33(12):1259−1273. doi: 10.15541/jim20180178

    KANG Yue, YUAN Bo, MA Tian, CHU Zeng-yong, ZHANG Zheng-jun. Development of microwave absorbing materials based on graphene[J]. J Inorg Mater,2018,33(12):1259−1273. doi: 10.15541/jim20180178
    [14] 王生浩, 文峰, 郝万军, 曹阳. 电磁污染及电磁辐射防护材料[J]. 环境科学与技术,2006,12:96−98+121. doi: 10.3969/j.issn.1003-6504.2006.09.039

    WANG Sheng-hao, WEN Feng, HAO Wan-jun, CAO-Yang. Electromagnetism pollution and protection materials for electromagnetic radiation[J]. Environ Sci Technol,2006,12:96−98+121. doi: 10.3969/j.issn.1003-6504.2006.09.039
    [15] SY/T5108−2014, 水力压裂和砾石充填作业用支撑剂性能测试方法[S].

    SY/T5108−2014, Measurement of properties of proppants used in hydraulic fracturing and gravel-packing operations[S].
    [16] LIU X X, ZHANG Z Y, WU Y P. Absorption properties of carbon black/silicon carbide microwave absorbers[J]. Composites Part B,2011,42(2):326−329. doi: 10.1016/j.compositesb.2010.11.009
    [17] LUO N, LI X J, WANG X H, YAN H, ZHANG C, WANG H. Synthesis and characterization of carbon-encapsulated iron/iron carbide nanoparticles by a detonation method[J]. Carbon,2010,48(13):3858−3863. doi: 10.1016/j.carbon.2010.06.051
    [18] YANG T Z, QIAN T, WANG M F, SHEN X W, XU N, SUN Z Z, YAN C L. A sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets for efficient sodium ion batteries[J]. Adv Mater,2016,28(3):539−545. doi: 10.1002/adma.201503221
    [19] WEN F S, HOU H, XING J Y, ZHANG X Y, SU Z B, YUAN S J, LIU Z Y. Fabrication of carbon encapsulated Co3O4 nanoparticles embedded in porous graphitic carbon nanosheets for microwave absorber[J]. Carbon,2015,89:372−377. doi: 10.1016/j.carbon.2015.03.057
    [20] YANG Y, GUO Z, ZHANG H, HUANG D Q, GU J L, HUANG Z H, KANG F Y, T. ALAN H, RUTLEDG G C. Electrospun magnetic carbon composite fibers: synthesis and electromagnetic wave absorption characteristics[J]. J Appl Polym Sci,2013,127(6):4288−4295. doi: 10.1002/app.38027
    [21] WANG G Z, GAO Z, TANG S W, CHEN C Q, DUAN F F, ZHAO S C, LIN S W, FENG Y H, ZHOU L, QIN Y. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition[J]. ACS Nano,2012,6(12):11009−11017. doi: 10.1021/nn304630h
    [22] COLE K S, COLE R H. Dispersion and absorption in dielectrics I. alternating current characteristics[J]. J Chem Phys,1941,9(4):341. doi: 10.1063/1.1750906
    [23] SU Q M, ZHONG G, LI J, DU G H, XU B S. Fabrication of Fe/Fe3C-functionalized carbon nanotubes and their electromagnetic and microwave absorbing properties[J]. Appl Phys A,2012,106(1):59−65. doi: 10.1007/s00339-011-6641-4
    [24] WEN F S, ZHANG F, LIU Z Y. Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers[J]. J Phys Chem C,2011,115(29):14025−14030. doi: 10.1021/jp202078p
    [25] AHARONI A. Exchange resonance modes in a ferromagnetic sphere[J]. J Appl Phys,1991,69(11):7762−7764. doi: 10.1063/1.347502
    [26] LI G M, WANG L C, LI W X, XU Y. Mesoporous Fe/C and Core-Shell Fe-Fe3C@C composites as efficient microwave absorbents[J]. Microporous Mesoporous Mater,2015,211(15):97−104.
    [27] WANG F Y, SUN Y Q, LI D R, ZHONG B, WU Z G, ZUO S Y, YAN D, ZHUO R F, FENG J J, YAN P X. Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning[J]. Carbon,2018,134:264−273. doi: 10.1016/j.carbon.2018.03.081
    [28] WANG X L, GENG Q Y, SHI G M, XU G, YU J, GUAN Y YZHANG Y J, LI D. One-pot solvothermal synthesis of Fe/Fe3O4 composites with broadband microwave absorption[J]. J Alloy Compd,2019,803(30):818−825.
    [29] LIU Q T, LIU X F, FENG H B, SHUI H C, YU R H. Metal organic framework-derived Fe/carbon porous composite with low Fe content for lightweight and highly efficient electromagnetic wave absorber[J]. Chem Eng J,2017,314(15):320−327.
    [30] QI X S, YANG Y, ZHONG W, QIN C, DENG Y, CHAKTONG A, DU Y W. Simultaneous synthesis of carbon nanobelts and carbon/Fe-Cu hybrids for microwave absorption[J]. Carbon,2010,48(12):3512−3522. doi: 10.1016/j.carbon.2010.05.047
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  724
  • HTML全文浏览量:  106
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-09
  • 修回日期:  2020-11-17
  • 刊出日期:  2021-02-08

目录

    /

    返回文章
    返回