留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

棉秆半焦与载镍橄榄石固-固化学链反应动力学研究

艾热提·阿不都艾尼 亚力昆江·吐尔逊 潘岳 阿布力克木·阿布力孜 迪丽努尔·塔力甫 钟梅

艾热提·阿不都艾尼, 亚力昆江·吐尔逊, 潘岳, 阿布力克木·阿布力孜, 迪丽努尔·塔力甫, 钟梅. 棉秆半焦与载镍橄榄石固-固化学链反应动力学研究[J]. 燃料化学学报(中英文), 2021, 49(4): 465-474. doi: 10.19906/j.cnki.JFCT.2021023
引用本文: 艾热提·阿不都艾尼, 亚力昆江·吐尔逊, 潘岳, 阿布力克木·阿布力孜, 迪丽努尔·塔力甫, 钟梅. 棉秆半焦与载镍橄榄石固-固化学链反应动力学研究[J]. 燃料化学学报(中英文), 2021, 49(4): 465-474. doi: 10.19906/j.cnki.JFCT.2021023
Hairat Abduhani, Yalkunjan Tursun, PAN Yue, Abulikemu Abulizi, Dilinuer Talifu, ZHONG Mei. Kinetics of solid-solid reaction between cotton char and Ni/olivine in chemical looping gasification[J]. Journal of Fuel Chemistry and Technology, 2021, 49(4): 465-474. doi: 10.19906/j.cnki.JFCT.2021023
Citation: Hairat Abduhani, Yalkunjan Tursun, PAN Yue, Abulikemu Abulizi, Dilinuer Talifu, ZHONG Mei. Kinetics of solid-solid reaction between cotton char and Ni/olivine in chemical looping gasification[J]. Journal of Fuel Chemistry and Technology, 2021, 49(4): 465-474. doi: 10.19906/j.cnki.JFCT.2021023

棉秆半焦与载镍橄榄石固-固化学链反应动力学研究

doi: 10.19906/j.cnki.JFCT.2021023
基金项目: 国家自然科学基金(21766037),煤炭高效利用与绿色化工国家重点实验室开放课题(2020-KF-12)和新疆维吾尔自治区重点实验室开放课题 (2018D04008)资助
详细信息
    通讯作者:

    Tel:15009912840,E-mail:yalkunjan54@aliyun.com

  • 中图分类号: TQ546.2

Kinetics of solid-solid reaction between cotton char and Ni/olivine in chemical looping gasification

Funds: The project was supported by the National Natural Science Foundation of China (21766037) , the Open Project Fund from State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (2020-KF-12) and Open Project of Key Laboratory of Xinjiang Uygur Autonomous Region (2018D04008)
  • 摘要: 本实验利用微型流化床反应分析仪(MFBRA)研究了棉秆半焦(CSC)与载镍橄榄石(Ni/olivine)的固-固化学链反应特性,利用模型拟合法在等温条件下对29种模型函数进行拟合计算,从中选取了最优的三种模型,计算出棉秆半焦和载氧体的固-固反应动力学。结果表明,CO和CO2是CSC与Ni/olivine反应的主要气体产物,固-固反应过程中,先析出CO后再析出CO2,CSC并不会完全转换成CO2,产气中CO的浓度比CO2大;随着反应温度的升高,产气中CO和CO2的浓度和产率增加。CO、CO2和CSC利用三种不同模型函数计算出来的活化能平均值分别为27.5、46.4和69.8 kJ/mol。利用热重研究了CSC和Ni/olivine非等温反应特性及动力学,结果表明,CSC和Ni/olivine的反应从750 ℃开始,在890 ℃时反应速率达到了峰值,非等温反应活化能为72.05 kJ/mol,这与MFBRA等温动力学活化能基本相似,说明生物质化学链气化过程中,半焦和镍基载氧体的固-固反应较容易发生。
  • FIG. 610.  FIG. 610.

    FIG. 610.  FIG. 610.

    图  1  微型流化床流程示意图

    Figure  1  Principle and schematic diagram of MFBRA

    图  2  (a), (b): Ni/olivine载氧体的SEM照片;(c): Ni元素能谱面扫图

    Figure  2  (a), (b): SEM images of Ni/olivine;(c): Mapping images of Ni

    图  3  新鲜载氧体的XRD谱图

    Figure  3  XRD patterns of the fresh OCs

    图  4  石英砂、Olivine和Ni/olivine与棉秆半焦反应产气组成随时间的变化

    Figure  4  Comparison of gas composition of the reaction between CSC with silica sand, Olivine and Ni/olivine

    图  5  不同温度下CSC与Ni/olivine反应气体组成随时间的变化

    Figure  5  Gas composition variation of during the reaction of CSC and Ni/olivine under different temperatures

    图  6  不同温度下转化率随反应时间的变化

    Figure  6  Conversion and reaction time at different temperatures

    图  7  29种模型函数拟合线性相关性系数比较

    Figure  7  Linear correlation coefficients of 29 model functions

    图  8  CO、CO2和CSC在不同温度下三种模型函数(A:750 ℃、B:850 ℃、C:950 ℃)

    Figure  8  Three model functions of CO,CO2 and CSC at different temperatures (A: 750 ℃、B: 850 ℃、C: 950 ℃)

    图  9  基于不同模型函数产气及半焦的Arrhenius曲线

    Figure  9  Arrhenius curves of gas productions and CSC based on different models

    图  10  基于热重CSC与Ni/olivine非等温反应TG和DTG曲线

    Figure  10  TG and DTG curves of non-isothermal reaction of CSC with Ni/olivine by TGA

    表  1  29种固-固反应模型函数

    Table  1  29 model functions of solid -solid reactions

    NumberFunction nameMechanismG(x)
    1Maple power order (Exponential nucleation)Phase boundary reaction (One-dimensional), R1, n = 1$ x $
    2Maple power order (Exponential nucleation)n = $ \dfrac{1}{2} $$ {x}^{\frac{1}{2}} $
    3Maple power order (Exponential nucleation)n = $ \dfrac{1}{3} $$ {x}^{\frac{1}{3}} $
    4Maple power order (Exponential nucleation)n = $ \dfrac{1}{4} $$ {x}^{\frac{1}{4}} $
    5Maple power order (Exponential nucleation)n = $ \dfrac{2}{3} $$ {x}^{\frac{2}{3}} $
    6Parabola orderOne-dimensional diffusion, 1D, D1 Deceleration curve of α-t$ {x}^{2} $
    72 orderChemical reaction, F2, Deceleration curve of α-t$ {\left(1-x\right)}^{-1} $
    82/3 orderChemical reaction$ {{\left(1-x\right)}}^{-\frac{1}{2}} $
    9Reaction orderChemical reaction$ {\left(1-x\right)}^{-1}-1 $
    10Shrink cylinder (area)Phase boundary reaction, Cylindrical Symmetry, R2, Deceleration curve of α-t, n = $ \dfrac{1}{2} $$ 1-{\left(1-x\right)}^{\frac{1}{2}} $
    11Shrink ball (volume)Phase boundary reaction, Spherical Symmetry, R3, Deceleration curve of α-t, n = $ \dfrac{1}{3} $$ 1-{\left(1-x\right)}^{\frac{1}{3}} $
    12Reaction ordern = $ \dfrac{1}{4} $$ 1-{\left(1-x\right)}^{\frac{1}{4}} $
    13Reaction ordern = 2$ 1-{\left(1-x\right)}^{2} $
    14Reaction ordern = 3$ 1-{\left(1-x\right)}^{3} $
    15Reaction ordern = 4$ 1-{\left(1-x\right)}^{4} $
    16Maple single law, First orderRandom nucleation and subsequent growth, There is only one core on each particle, A1, F1, Sigmoid curve of α-t, n = 1, m = 1$ -{\rm{ln}}\left(1-x\right) $
    17Avrami-erofeev equationRandom nucleation and subsequent growth, A2, Sigmoid curve of α-t, n = $ \dfrac{1}{2} $, m = 2$ {\left[-{\rm{ln}}\left(1-x\right)\right]}^{\frac{1}{2}} $
    18Avrami-erofeev equationRandom nucleation and subsequent growth, A3, Sigmoid curve of α-t, n = $ \dfrac{1}{3} $, m = 3$ {\left[-{\rm{ln}}\left(1-x\right)\right]}^{\frac{1}{3}} $
    19Avrami-erofeev equationRandom nucleation and subsequent growth, A4, Sigmoid curve of α-t, n = $ \dfrac{1}{4} $, m = 4$ {\left[-{\rm{ln}}\left(1-x\right)\right]}^{\frac{1}{4}} $
    20Avrami-erofeev equationRandom nucleation and subsequent growth, A1.5, n = $ \dfrac{2}{3} $$ {\left[-{\rm{ln}}\left(1-x\right)\right]}^{\frac{2}{3}} $
    21Avrami-erofeev equationRandom nucleation and subsequent growth, n = 2 (Code: AE2)$ {\left[-{\rm{ln}}\left(1-x\right)\right]}^{2} $
    22Avrami-erofeev equationRandom nucleation and subsequent growth, n = 3 (Code: AE3)$ {\left[-{\rm{ln}}\left(1-x\right)\right]}^{3} $
    23Avrami-erofeev equationRandom nucleation and subsequent growth, n = 4 (Code: AE4)$ {\left[-{\rm{ln}}\left(1-x\right)\right]}^{4} $
    24Jander equationSpherical Symmetry, 3D, D3, Deceleration curve of α-t, n = 2$ {\left[1-{\left(1-x\right)}^{\frac{1}{3}}\right]}^{2} $
    25Jander equationThree-dimensional diffusion, 3D, n = $ \dfrac{1}{2} $$ {\left[1-{\left(1-x\right)}^{\frac{1}{3}}\right]}^{\frac{1}{2}} $
    26Jander equationThree-dimensional diffusion, 2D, n = $ \dfrac{1}{2} $$ {\left[1-{\left(1-x\right)}^{\frac{1}{2}}\right]}^{\frac{1}{2}} $
    27Z-L-T equationThree-dimensional diffusion, 3D$ {\left[{{\left(1-x\right)}^{-}}^{\frac{1}{3}}-1\right]}^{2} $
    28Valensi equationTwo-dimensional diffusion, Cylindrical Symmetry, 2D, D2, Deceleration curve of α-t$ x + \left(1-x\right){\rm{ln}}\left(1-x\right) $
    29Ginstling-brounshtein equationSpherical Symmetry, 3D, D4, Deceleration curve of α-t$ 1-\dfrac{2}{3}x-{\left(1-x\right)}^{\frac{2}{3}} $
    下载: 导出CSV

    表  2  基于MFBRA等温反应动力学参数

    Table  2  Kinetic parameters of isothermal reaction by MFBRA

    SampleModel functionE/(kJ·mol−1)AR2
    COG(16)27.541.530.995
    G(20)28.200.740.996
    G(24)26.710.160.994
    CO2G(11)47.230.110.977
    G(28)45.220.120.989
    G(29)46.620.040.989
    CSCG(11)69.411.350.995
    G(12)70.511.510.999
    G(24)69.361.700.991
    下载: 导出CSV

    表  3  基于热重非等温反应动力学参数

    Table  3  Kinetic parameters of non-isothermal reaction by TGA

    SampleE/(kJ·mol−1)AR2
    CSC72.051.330.953
    下载: 导出CSV
  • [1] 吴志强, 张博, 杨伯伦. 生物质化学链转化技术研究进展[J]. 化工学报, 2019, 70(8): 2835−2853.

    WU Zhi-qiang, ZHANG Bo, YANG Bo-lun. Research progress on biochemical chain transformation technology[J]. CIESC J, 2019, 70(8): 2835−2853.
    [2] LUO S W, ZENG L, FAN L S. Chemical looping technology: Oxygen carrier characteristics[J]. Annu Rev Chem Biomol Eng,2015,6(1):53−75. doi: 10.1146/annurev-chembioeng-060713-040334
    [3] WANG P, MEANS N, SHEKHAWAT D, BERRY D, MASSOUDI M. Chemical-looping combustion and gasification of coals and oxygen carrier development: A brief review[J]. Energies,2015,8(10):10605−10635. doi: 10.3390/en81010605
    [4] LUO S W, SUN Z C, BAOX G, FAN L S. Role of metal oxide support in redox reactions of iron oxide for chemical looping applications: experiments and density functional theory calculations[J]. Energy Environ Sci,2011,4(9):3661−3667. doi: 10.1039/c1ee01325d
    [5] VARDANYAN A, KHACHATRYAN A, ZARUHI M. CHEMICAL OXIDATION INTEGRATED INTO BIOLEACHING OF PYRITE AND CHALCOPYRITE USING IMMOBILIZED BIOMASS[J]. Environ Eng Manage J,2018,17(4):897−904. doi: 10.30638/eemj.2018.090
    [6] ZHANG P, LI S, GUO P. Investigating the kinetics of liquid-free, OSDA-free ZSM-5 zeolite synthesis from iron ore tailings[J]. Int J Chem Kinet,2020,52(6):403−412. doi: 10.1002/kin.21359
    [7] NELSON T, WATT J G V D, LAUDAL D, FEILEN H, SRINIVASACHAR S. Reactive jet and cyclonic attrition analysis of ilmenite in chemical looping combustion systems[J]. Int J Green Gas Control,2019,91:102837. doi: 10.1016/j.ijggc.2019.102837
    [8] PAN Y, TURSUN Y, ABDUHANI H, DILNUR T. Chemical looping gasification of cotton stalk with bimetallic Cu/Ni/olivine as oxygen carrier[J]. Int J Energy Res,2020,44:7268−7282. doi: 10.1002/er.5439
    [9] CHEN L Y, BAO J H, KONG L, COMBS M, HEATHER S, ZHEN F, LIU K L. The direct solid-solid reaction between coal char and iron-based oxygen carrier and its contribution to solid-fueled chemical looping combustion[J]. Appl Energy,2016,184:9−18. doi: 10.1016/j.apenergy.2016.09.085
    [10] GUO Q J, CHENG Y, LIU Y Z, JIA W H, RYU, H J. Coal chemical looping gasification for syngas generation using an iron-based oxygen carrier[J]. Ind Eng Chem Res,2014,53(1):78−86. doi: 10.1021/ie401568x
    [11] TIAN X, ZHAO H B, WANG K, MA J C, ZHENG C G. Performance of cement decorated copper ore as oxygen carrier in chemical-looping with oxygen uncoupling[J]. Int J Green Gas Control,2015,41:210−218.
    [12] 冉景煜, 张松, 秦昌雷, 禹建功, 付范萱, 杨琳. 生物质半焦/铜基载氧体气化反应特性研究[J]. 燃料化学学报,2014,42(11):1316−1323.

    RAN Jing-yu, ZHANG Song, QIN Chang-lei, YU Jian-gong, FU Fan-xun, YANG Lin. Gasification rea ctivity of biomass char with oxygen carrier CuO[J]. J Fuel Chem Technol,2014,42(11):1316−1323.
    [13] 程丹琰, 雍其润, 龚本根, 赵永椿, 张军营. 煤和生物质化学链气化中铜基载氧体与灰分的碳热反应研究[J]. 燃料化学学报,2020,48(1):18−27.

    CHENG Dan-yan, YONG Qi-run, GONG Ben-gen, ZHAO Yong-chun, ZHANG Jun-ying. Carbothermal interaction between Cu-based oxygen carrier and ash minerals in the chemical-looping gasification of coal and biomass[J]. J Fuel Chem Technol,2020,48(1):18−27.
    [14] 曾玺, 王芳, 韩江则, 张聚伟, 刘云义, 汪印, 余剑, 许光文. 微型流化床反应分析及其对煤焦气化动力学的应用[J]. 化工学报,2013,64(1):289−296. doi: 10.3969/j.issn.0438-1157.2013.01.032

    ZENG Xi, WANG Fang, HAN Jiang-ze, ZHANG Ju-wei, LIU Yun-yi, WANG Yin, YU Jian, XU Guang-wen. Micro fluidized bed reaction analysis and its application to coal char gasification kinetics[J]. CIESC J,2013,64(1):289−296. doi: 10.3969/j.issn.0438-1157.2013.01.032
    [15] GUO F Q, DONG Y P, LV Z C, FAN P F, YANG S, DONG L. Kinetic behavior of biomass under oxidative atmosphere using a micro-fluidized bed reactor[J]. Energy Conver Manage,2016,108:210−218. doi: 10.1016/j.enconman.2015.11.014
    [16] 王芳, 曾玺, 王永刚, 余剑, 岳君容, 张建岭, 许光文. 微型流化床与热重测定煤焦非等温气化反应动力学对比[J]. 化工学报,2015,66(5):1716−1722.

    WANG Fang, ZENG Xi, WANG Yong-gang, YU Jian, YUE Jun-rong, XU Guang-wen. Comparation of non-isothermal coal char gasification in micro fluidized bed and thermogravimetric analyzer[J]. CIESC J,2015,66(5):1716−1722.
    [17] ZENG X, WANG F, AdAMUA M H, ZHANG L J, HAN Z N, XU G W. High-temperature drying behavior and kinetics of lignite tested by the micro fluidization analytical method[J]. Fuel,2019,253:180−188. doi: 10.1016/j.fuel.2019.05.025
    [18] HE K, ZHENG Z, CHEN Z. Multistep reduction kinetics of Fe3O4 to Fe with carbon monoxide in a micro fluidized bed reaction analyzer[J]. Powder Technol,2019,360:1−10.
    [19] GUO F Q, PENG K Y, ZHAO X M, JIANG X C, LIN Q, GUO C L, RAO Z H. Influence of impregnated copper and zinc on the pyrolysis of rice husk in a micro-fluidized bed reactor: Characterization and kinetics[J]. Int J Hydrogen Energy,2018,43(46):21256−21268. doi: 10.1016/j.ijhydene.2018.10.013
    [20] KUBA M, KIRNBAUER F, HOFBAUER H. Influence of coated olivine on the conversion of intermediate products from decomposition of biomass tars during gasification[J]. Biomass Convers Biorefin,2017,7(1):11−21. doi: 10.1007/s13399-016-0204-z
    [21] 王芳 曾玺, 韩江则, 张聚伟, 刘云义, 汪印, 李奡明, 余剑, 许光文. 微型流化床与热重测定煤焦-CO2气化反应动力学的对比研究[J]. 燃料化学学报, 2013, 41(4): 407−413.

    ZENG Xi, WANG Fang, HAN Jiang-ze, ZHANG Ju-wei, WANG Yin, LI Ao-ming, YU Jian, XU Guang-wen. Comparation of char gasification kinetics studied by micro fluidized bed and by thermogravimetric analyzer.[J] J Fuel Chem Technol, 2013, 41(4): 407−413.
    [22] YU J, YAO C B, ZENG X, GENG S, DONG L, WANG Y, GAO S Q, XU G W. Biomass pyrolysis in a micro-fluidized bed reactor: Characterization and kinetics[J]. Chem Eng J,2011,168(2):839−847. doi: 10.1016/j.cej.2011.01.097
    [23] LIU Y, GUO F Q, LI X L, LIT T, PENG K Y, GUO C L, CHANG J F. Catalytic effect of iron and nickel on gases formation from fast biomass pyrolysis in a micro-fluidized bed reactor: A kinetic study[J]. Energy Fuels,2017,31(11):12278−12287. doi: 10.1021/acs.energyfuels.7b02214
    [24] YAN X Y, HU J J, ZHANG Q G, ZHAO S H, DANG J T, WANG W. Chemical-looping gasification of corn straw with Fe-based oxygen carrier: Thermogravimetric analysis[J]. Bioresour Technol,2020,303:122904.
    [25] 郭飞强, 刘元, 郭成龙, 董玉平. 微型流化床内碱金属和碱土金属对稻壳热解动力学的影响特性[J]. 化工学报,2017,68(10):3795−3804.

    GUO Fei-qiang, LIU Yuan, GUO Cheng-long, DONG Yu-ping. Influence of AAEM on kinetic characteristics of rice husk pyrolysis in micro-fluidized bed reactor[J]. CIESC J,2017,68(10):3795−3804.
    [26] 糜梦星, 邢献军, 张学飞, 陈泽宇, 朱成成, 付一轩. 基于分布式改良Coats-Redfern法的梧桐叶燃烧动力学研究[J]. 太阳能学报, 2019, 40(9): 2672-2679.

    MI Meng-xing, XING Xian-jun, ZHANG Xue-fei, CHEN Ze-yu, ZHU Cheng-cheng, FU Yi-xuan. Study on combustion kinetics of phoenix tree’s leaves based on distributed Coats-Redfern (Modified) method.[J] Acta Solar Energy, 2019, 40(9): 2672-2679.
    [27] 杨小芹, 徐绍平, 胡冠, 刘长厚. 不同矿源橄榄石对催化苯水蒸气重整的影响[J]. 催化学报,2009,30(6):497−502. doi: 10.3321/j.issn:0253-9837.2009.06.005

    YANG Xiao-qing, XU Shao-ping, HU Guan, LIU Chang-hou. Effects of olivines from different quarries on the steam reforming of benzene[J]. Chin J Catal,2009,30(6):497−502. doi: 10.3321/j.issn:0253-9837.2009.06.005
    [28] DEVI L, PTASINSKI K J, JANSSEN F J J G. Pretreated olivine as tar removal catalyst for biomass gasifiers: investigation using naphthalene as model biomass tar[J]. Fuel Process Technol,2005,86(6):707−730. doi: 10.1016/j.fuproc.2004.07.001
    [29] MENG J G, WANG X B, ZHAO X B, ZHANG A Q, HUANG Z. Highly abrasion resistant thermally fused olivine as in-situ catalysts for tar reduction in a circulating fluidized bed biomass gasifier[J]. Bioresour Technol,2018,268:212−220. doi: 10.1016/j.biortech.2018.07.135
    [30] TURSUN Y, XU S P, ABULIKEMU A, DILNUR T. Biomass gasification for hydrogen rich gas in a decoupled triple bed gasifier with olivine and NiO/olivine[J]. Bioresour Technol,2019,272:241−248.
    [31] 赵海波, 刘黎明, 徐迪, 郑楚光, 刘国军, 蒋林林. 气体燃料化学链燃烧技术中的溶胶凝胶Ni基氧载体研究[J]. 燃料化学学报,2008,36(3):261−266. doi: 10.1016/S1872-5813(08)60020-1

    ZHAO Hai-bo, LIU Li-ming, XU Di, ZHEN Chun-guang, LIU Guo-jun, JIANG Lin-lin. NiO/NiAl204 oxygen carriers prepared by sol-gel for chemical-looping combustion fueled by gas[J]. J Fuel Chem Technol,2008,36(3):261−266. doi: 10.1016/S1872-5813(08)60020-1
    [32] WANG F, ZENG X, WANG Y G, YU J, XU G W. Characterization of coal char gasification with steam in a micro-fluidized bed reaction analyzer[J]. Fuel Process Technol,2016,141:2−8.
    [33] ZHANG Y M, SUN G G, GAO S Q, XU G W. Regeneration Kinetics of Spent FCC Catalyst via Coke Gasification in a Micro Fluidized Bed[J]. Procedia Eng,2015,102:1758−1765.
    [34] 余剑, 李强, 段正康, 朱剑虹, 岳君容, 李养明, 许光文. 微型流化床中的等温微分反应特性[J]. 中国科学: 化学,2011,41(1):152−160.

    YU Jian, LI Qiang, DUAN Zheng-kang, ZHU Jian-hong, YUE Jun-rong, LI Yang-ming, XU Guang-wen. Isothermal differential characteristics of the reaction in micro fluidized bed[J]. Sci Sin Chem,2011,41(1):152−160.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  261
  • HTML全文浏览量:  169
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-05
  • 修回日期:  2020-12-09
  • 网络出版日期:  2021-03-30
  • 刊出日期:  2021-04-10

目录

    /

    返回文章
    返回