留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨炔对乙烷、乙烯和乙炔分离性能的分子模拟

吴勇 年佩 刘喆 张金鹏 王睿涵 王乃良 白红存 郭庆杰

吴勇, 年佩, 刘喆, 张金鹏, 王睿涵, 王乃良, 白红存, 郭庆杰. 石墨炔对乙烷、乙烯和乙炔分离性能的分子模拟[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2021039
引用本文: 吴勇, 年佩, 刘喆, 张金鹏, 王睿涵, 王乃良, 白红存, 郭庆杰. 石墨炔对乙烷、乙烯和乙炔分离性能的分子模拟[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2021039
WU Yong, NIAN Pei, LIU Zhe, ZHANG Jin-peng, WANG Rui-han, WANG Nai-liang, BAI Hong-cun, GUO Qingjie. Molecular simulation of graphyne separation performance for ethane, ethylene and acetylene[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2021039
Citation: WU Yong, NIAN Pei, LIU Zhe, ZHANG Jin-peng, WANG Rui-han, WANG Nai-liang, BAI Hong-cun, GUO Qingjie. Molecular simulation of graphyne separation performance for ethane, ethylene and acetylene[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2021039

石墨炔对乙烷、乙烯和乙炔分离性能的分子模拟

doi: 10.19906/j.cnki.JFCT.2021039
基金项目: 国家自然科学基金项目(21863008,21363017);宁夏高等学校一流学科建设项目(NXYLXK2017A04)
详细信息
    作者简介:

    吴勇,1156222959@qq.com

    通讯作者:

    E-mail,hongcunbai@nxu.edu.cn; hongcunbai@gmail.com

  • 中图分类号: TQ 028.8

Molecular simulation of graphyne separation performance for ethane, ethylene and acetylene

Funds: National Natural Science Foundation of China (21863008, 21363017); First class discipline construction project of Ningxia University (NXYLXK2017A04)
  • 摘要: 乙烯作为重要的化工原料,在传统蒸汽裂解生产乙烯的过程中,会产生乙炔、乙烷等副产物,如何有效地将这三种烃类气体分离至关重要。本文基于密度泛函理论系统探究了石墨炔膜对三种气体的吸附、选择和渗透性能,并结合吸附作用分析和约化密度梯度分析,探索了三种气体分子穿透过石墨炔膜的相互作用类型、强度以及作用区域,并给出了分离性能的量子力学解释。结果表明,石墨炔膜常温下对乙炔/乙烯、乙炔/乙烷、乙烯/乙烷的选择性分别可以达到2 × 105,4 × 107,165;乙炔在常温下的渗透率约为6.54 × 10−5 mol·m−2·s−1·Pa−1,高出工业标准约5个数量级,乙烯渗透率在400 K左右时达到工业标准。通过量子力学角度分析,气体分子与石墨炔膜相互作用区域在气体分子与石墨炔骨架上的中心位置之间,作用类型主要表现为范德华作用,随着气体分子逐渐穿透靠近石墨炔膜的过程中,相互作用逐渐增强,作用强度乙炔 < 乙烯 < 乙烷,与能垒计算结果保持一致。
  • 图  1  石墨炔膜以及乙炔、乙烯、乙烷的结构(黑色原子为碳原子,白色原子为氢原子)

    Figure  1.  Graphene film and the structure of acetylene, ethylene, and ethane (black atoms are carbon atoms, white atoms are hydrogen atoms)

    图  2  三种气体分子穿透石墨炔薄膜的相互作用曲线

    Figure  2.  Interaction curves of three gas molecules penetrating the graphyne membrane

    图  3  三种气体分子扩散过程过渡态结构

    Figure  3.  Transition state structure of three gas molecules in diffusion process

    图  4  石墨炔膜对三种气体之间的选择性随温度变化曲线

    Figure  4.  Graphene membrane selectivity between the three gases varies with temperature

    图  5  三种气体穿透石墨炔薄膜渗透率随温度的变化曲线

    Figure  5.  Permeability of the three gases penetrating the graphyne membrane varies with temperature

    图  6  乙炔、乙烯、乙烷的吸附态构象

    Figure  6.  Adsorption state conformation of acetylene, ethylene and ethane

    图  7  三种分子穿透过程吸附态到过渡态5个构象isosurface=0.5处RDG填色图

    Figure  7.  Three kinds of molecular penetration process adsorption state to transition state 5 conformations isosurface=0.5 RDG coloring diagram

    表  1  300 K时不同分离膜对乙烯/乙烷,丙烯/丙烷选择性对比

    Table  1.   Comparison of the selectivity of different separation membranes to ethylene/ethane and propylene/propane at 300 K

    MembraneS(C2H4/C2H6)S(C3H6/C3H8)
    Graphyne165
    CMS[3]12
    Functionalised graphene[21]47
    Boron Nitride[7]128
    BPDA-pp′ODA[4]33
    ZIF-8[6]100
    Ag-Exchanged Zeolite[24]15.955.4
    下载: 导出CSV

    表  2  三种气体在石墨炔膜表面的吸附能(Ead)、吸附距离(Dad)、气体分子动力学直径(D0)以及能垒大小(Eb

    Table  2.   Adsorption energy (Ead), adsorption distance (Dad), gas molecular dynamic diameter (D0) and energy barrier size (Eb) of two gases on the surface of graphyne membrane

    MoleculeEad/eVDad/nmD0/nmEb/eV
    C2H2−0.2120.0780.350.138
    C2H4−0.2560.0810.410.459
    C2H6−0.2620.0960.440.591
    下载: 导出CSV
  • [1] QIAO Z, ZHAO S, SHENG M, WANG J, WANG S, WANG Z, ZHONG C, GUIVER M D. Metal-induced ordered microporous polymers for fabricating large-area gas separation membranes[J]. Nat Meter,2019,18(2):163. doi: 10.1038/s41563-018-0221-3
    [2] BACHMAN J E, SMITH Z P, LI T, XU T, LONG J R. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals[J]. Nat Meter,2016,15(8):845. doi: 10.1038/nmat4621
    [3] XU L, RUNGTA M, KOROS W J. Matrimid (R) derived carbon molecular sieve hollow fiber membranes for ethylene/ethane separation[J]. J Membr Sci,2011,380(1-2):138−147. doi: 10.1016/j.memsci.2011.06.037
    [4] HAYASHI J, MIZUTA H, YAMAMOTO M, KUSAKABE K, MOROOKA S, SUH S. Separation of ethane/ethylene and propane/propylene systems with a carbonized bpda−pp‘oda polyimide membrane[J]. Ind Eng Chem Res,1996,35(11):4176−4181. doi: 10.1021/ie960264n
    [5] KANEZASHI M, SHAZWANI W N, YOSHIOKA T, TSURU T. Separation of propylene/propane binary mixtures by bis(triethoxysilyl) methane (BTESM)-derived silica membranes fabricated at different calcination temperatures[J]. J Membr Sci,2012,415-416:478−485. doi: 10.1016/j.memsci.2012.05.034
    [6] LIU D, MA X, XI H, LIN Y S. Gas transport properties and propylene/propane separation characteristics of ZIF-8 membranes[J]. J Membr Sci,2014,451:85−93. doi: 10.1016/j.memsci.2013.09.029
    [7] DOU H, XU M, JIANG B, WEN G, ZHAO L, WANG B, YU A, BAI Z, SUN Y, ZHANG L, CHEN Z, JIANG Z. Bioinspired graphene oxide membranes with dual transport mechanisms for precise molecular separation[J]. Adv Funct Mater,2019,29(50):1905229. doi: 10.1002/adfm.201905229
    [8] YUN J, ZHANG Y, XU M, YAN J, ZHAO W, ZHANG Z. DFT study of the effect of BN pair doping on the electronic and optical properties of graphyne nanosheets[J]. J Membr Sci,2017,52(17):10294−10307.
    [9] 李勇军, 李玉良. 二维高分子——新碳同素异形体石墨炔研究[J]. 高分子学报,2015(02):147−165.

    LI Yong-jun, Li Yu-liang. A study on two dimensional macromolecule Foshan allotrope of carbon[J]. Acta Polym Sin,2015(02):147−165.
    [10] LI G, LI Y, LIU H, GUO Y, LI Y, ZHU D. Architecture of graphdiyne nanoscale films[J]. Chem Commun (Camb),2010,46(19):3256−3258. doi: 10.1039/b922733d
    [11] LI H, WANG X, LI Z, PAN S. Theoretical study on the structure and properties of graphdiyne[J]. Acta Chim Sinica,2013,71(1):75. doi: 10.6023/A12090728
    [12] 刘鸣华, 李玉良. 石墨炔: 从合成到应用[J]. 物理化学学报,2018,34(09):959−960. doi: 10.3866/PKU.WHXB201803232

    LIU Ming-hua, LI Yu-liang. Graphite acetylene: from synthesis to application[J]. Acta Phys-chim Sin,2018,34(09):959−960. doi: 10.3866/PKU.WHXB201803232
    [13] SUN Y, BAI H, HUANG Y. Structures, electronic properties and charge carrier mobility of graphdiyne-like BN nanoribbons[J]. RSC Advances,2015,5(12):8965−8973. doi: 10.1039/C4RA10947C
    [14] BAI H, ZHU Y, QIAO W, HUANG Y. Structures, stabilities and electronic properties of graphdiyne nanoribbons[J]. RSC Advances,2011,1(5):768. doi: 10.1039/c1ra00481f
    [15] WANG Y, WU Q, DENG S, MA R, HUANG X, BI L, YANG Z. Hydrogen storage in Na-decorated H4, 4, 4-graphyne: A density functional theory and monte carlo study[J]. Appl Surf Sci,2019,495:143621. doi: 10.1016/j.apsusc.2019.143621
    [16] JIAO Y, DU A, HANKEL M, ZHU Z, RUDOLPH V, SMITH S C. Graphdiyne: a versatile nanomaterial for electronics and hydrogen purification[J]. Chem Commun,2011,47(43):11843. doi: 10.1039/c1cc15129k
    [17] GRIMME S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. J Comput Chem,2006,27(15):1787−1799. doi: 10.1002/jcc.20495
    [18] JOSEPH A, THOMAS V I, ZYLA G, PADMANABHAN A S, MATHEW S. Theoretical probing of weak anion-cation interactions in certain pyridinium-based ionic liquid ion pairs and the application of molecular electrostatic potential in their ionic crystal density determination: a comparative study using density functional approach[J]. J Phys Chem A,2018,122(1):328−340. doi: 10.1021/acs.jpca.7b09189
    [19] RAO C N R, SOOD A K, VOGGU R, SUBRAHMANYAM K S. Some novel attributes of graphene[J]. J Phys Chem Lett,2010,1(2):572−580. doi: 10.1021/jz9004174
    [20] LI H, SONG Z, ZHANG X, HUANG Y, LI S, MAO Y, PLOEHN H J, BAO Y, YU M. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation[J]. SCIENCE,2013,342(6154):95−98. doi: 10.1126/science.1236686
    [21] HOU Y, LI Y, JIANG C, XU Y, WANG M, NIU Q J. Molecular simulation for separation of ethylene and ethane by functionalised graphene membrane[J]. Mol Simulat,2019,45(16):1322−1331. doi: 10.1080/08927022.2019.1632451
    [22] 李桂霞, 姜永超, 李鹏, 潘维, 李永平, 刘云杰. 菱形石墨炔薄膜He分离特性的密度泛函理论研究[J]. 物理化学学报,2017,33(11):2219−2226. doi: 10.3866/PKU.WHXB201705192

    LI Gui-xia, JIANG Yong-chao, LI Peng, PAN Wei, LI Yong-ping, LIU Yun-jie. Density functional theory study on He separation properties of rhombic graphite acetylene films[J]. Acta Phys-chim Sin,2017,33(11):2219−2226. doi: 10.3866/PKU.WHXB201705192
    [23] MENG Z, ZHANG X, ZHANG Y, GAO H, WANG Y, SHI Q, RAO D, LIU Y, DENG K, LU R. Graphdiyne as a high-efficiency membrane for separating oxygen from harmful gases: a first-principles study[J]. ACS Appl Mater Interfaces,2016,8(41):28166−28170. doi: 10.1021/acsami.6b08662
    [24] SAKAI M, SASAKI Y, TOMONO T, SESHIMO M, MATSUKATA M. Olefin selective ag-exchanged x-type zeolite membrane for propylene/propane and ethylene/ethane separation[J]. ACS Appl Mater Interfaces,2019,11(4):4145−4151. doi: 10.1021/acsami.8b20151
    [25] GUO Y. The Vlasov-Maxwell-Boltzmann system near maxwellians[J]. Invent Math,2003,153(3):593−630. doi: 10.1007/s00222-003-0301-z
    [26] OYAMA S, LEE D, HACARLIOGLU P, SARAF R. Theory of hydrogen permeability in nonporous silica membranes[J]. J Membr Sci,2004,244(1-2):45−53. doi: 10.1016/j.memsci.2004.06.046
    [27] ZHU Z. Permeance should be used to characterize the productivity of a polymeric gas separation membrane[J]. J Membr Sci,2006,281(1-2):754−755. doi: 10.1016/j.memsci.2006.04.040
    [28] CAPPEL D, TÜLLMANN S, KRAPP A, FRENKING G. Direct estimate of the conjugative and hyperconjugative stabilization in diynes, dienes, and related compounds[J]. Angew Chem Int Ed,2010,44(23):3617−3620.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-03-30

目录

    /

    返回文章
    返回