留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤系针状焦生产过程中同一生焦周期内焦炭微观结构差异性分析

程俊霞 赵雪飞 刘巍 朱亚明 高丽娟 赖仕全

程俊霞, 赵雪飞, 刘巍, 朱亚明, 高丽娟, 赖仕全. 煤系针状焦生产过程中同一生焦周期内焦炭微观结构差异性分析[J]. 燃料化学学报(中英文), 2021, 49(8): 1102-1110. doi: 10.19906/j.cnki.JFCT.2021051
引用本文: 程俊霞, 赵雪飞, 刘巍, 朱亚明, 高丽娟, 赖仕全. 煤系针状焦生产过程中同一生焦周期内焦炭微观结构差异性分析[J]. 燃料化学学报(中英文), 2021, 49(8): 1102-1110. doi: 10.19906/j.cnki.JFCT.2021051
CHENG Jun-xia, ZHAO Xue-fei, LIU Wei, ZHU Ya-ming, GAO Li-juan, LAI Shi-quan. Analysis on the difference of coke microstructure in the same coking cycle during the production of coal-based needle coke[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1102-1110. doi: 10.19906/j.cnki.JFCT.2021051
Citation: CHENG Jun-xia, ZHAO Xue-fei, LIU Wei, ZHU Ya-ming, GAO Li-juan, LAI Shi-quan. Analysis on the difference of coke microstructure in the same coking cycle during the production of coal-based needle coke[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1102-1110. doi: 10.19906/j.cnki.JFCT.2021051

煤系针状焦生产过程中同一生焦周期内焦炭微观结构差异性分析

doi: 10.19906/j.cnki.JFCT.2021051
基金项目: 国家自然科学基金(U1361126),辽宁省自然科学基金(20180551218),辽宁省教育厅项目(2020LNQN03)和辽宁科技大学优秀人才培养项目(2018RC07)资助
详细信息
    通讯作者:

    E-mail: zhao_xuefei@sohu.com

  • 中图分类号: TQ53

Analysis on the difference of coke microstructure in the same coking cycle during the production of coal-based needle coke

Funds: The project was supported by the National Natural Science Foundation of China (U1361126), Natural Science Foundation of Liaoning Province (20180551218), Liaoning Provincial Department of Education Project (2020LNQN03), Excellent Talent Training Project of University of Science and Technology Liaoning (2018RC07)
  • 摘要: 以煤系针状焦生产过程同一生焦周期内八种不同进料时间的混合油为研究对象。采用偏光显微镜定量分析混合油制备针状焦的光学组织结构;扫描电镜(SEM)观察针状焦的形貌;XRD、Raman光谱分析针状焦的微晶结构等手段。研究不同进料时间的混合油转化为针状焦后的质量差异。结果表明,混合油热转化后生焦的收率高于理论计算的收率,说明重油参与了热转化反应。并且形成了以流线型为主的光学组织结构的生焦。生焦煅烧后形成针状焦光学组织结构中含有纤维结构最多的是样品MO-8";其次是MO-16",总纤维含量最少的是样品MO-32"。SEM进一步证明了MO-8"的片层数量更多且取向更规整。针状焦的XRD谱图分析表明,针状焦中的微晶结构参数(层间距d002, 片层含量N以及每一层中碳原子数n)非常接近。但是趋于规整的石墨微晶含量(Ig)却存在明显的差异,其中MO-8"含量最高;其次是MO-4",含量最少的是样品MO-32"。Raman光谱分析结果进一步证实了针状焦的基础微观结构相近。其根本原因在于针状焦的基础微观结构由混合油中的精制沥青决定的,但是由于重油在系统内不断循环改变了成焦的环境,造成了针状焦微观结构的差异。因此,煤系针状焦生产中,生焦周期不易超过32 h,否则将严重影响针状焦的微观结构。
  • FIG. 847.  FIG. 847.

    FIG. 847.  FIG. 847.

    图  1  延迟焦化工艺示意图

    Figure  1  Diagram of delayed coking process

    图  2  生焦的收率(a)和挥发分(b)

    Figure  2  Yield (a) and volatile (b) of green needle coke

    图  3  生焦的光学组织照片

    Figure  3  Optical structure of green needle coke (a): MO-4'; (b): MO-8'; (c): MO-12'; (d): MO-16'; (e): MO-20'; (f): MO-24'; (g): MO-28'; (h): MO-32'; (i): HO'; (j): RCTP'

    图  4  煅烧后针状焦的收率

    Figure  4  Yield of needle coke after calcination

    图  5  针状焦的光学组织照片

    Figure  5  Optical structure of needle coke (a): MO-4"; (b): MO-8"; (c): MO-12"; (d): MO-16"; (e): MO-20"; (f): MO-24"; (g): MO-28"; (h): MO-32"

    图  6  (a)针状焦中各光学组织的含量,(b)针状焦中纤维总量

    Figure  6  (a) Content of optical structure in needle coke, (b) fiber content in needle coke

    图  7  针状焦的扫描电镜图片

    Figure  7  Scanning Electron Microscopic images of needle coke (a): MO-4"; (b): MO-8"; (c): MO-12"; (d): MO-16"; (e): MO-20"; (f): MO-24"; (g): MO-28"; (h): MO-32"

    图  8  (a)针状焦的XRD谱图,002峰分峰拟合图(b)MO-8"

    Figure  8  (a) XRD spectra of needle coke, (b) 002 peak-fitting spectra of MO-8"

    图  9  (a)针状焦的Raman谱图,(b)MO-8"的Raman拟合谱图

    Figure  9  (a) Raman spectra of needle coke, (b) curve-fitted Raman spectrum of MO-8"

    表  1  混合油的基本性质

    Table  1  Proximate analysis of mixed oils

    SampleCVa/%TIb/%QIc/%ρ100d/(g·cm−3)Mne/( g·mol−1)
    MO-417.971.49< 0.011.137275.93
    MO-816.191.46< 0.011.138288.33
    MO-1217.411.90< 0.011.138301.27
    MO-1617.641.56< 0.011.141293.58
    MO-2017.292.12< 0.011.138313.18
    MO-2417.442.56< 0.011.138323.64
    MO-2817.642.56< 0.011.143320.50
    MO-3217.752.36< 0.011.145368.39
    a: Coking value,b: Toluene insoluble, c: Quinoline insoluble, d: The density of 100 ℃, e: Average molecular weight
    下载: 导出CSV

    表  2  XRD各参数计算

    Table  2  Calculation results of XRD parameters

    Sampled002/nmLc/nmLa/nmIg/%Nn
    MO-4"0.3432.693.8576.02715
    MO-8"0.3402.644.0680.63715
    MO-12"0.3462.694.7651.57715
    MO-16"0.3422.774.8373.63716
    MO-20"0.3472.713.5558.70715
    MO-24"0.3472.694.8259.08715
    MO-28"0.3442.585.4974.67714
    MO-32"0.3492.664.9048.62714
    下载: 导出CSV

    表  3  Raman各参数计算

    Table  3  Calculation results of Raman parameters

    SampleID1/Iall/%ID2/Iall/%ID3/Iall/%ID4/Iall/%IG/Iall/%
    MO-4”51.679.278.1810.7020.19
    MO-8”49.725.8612.1210.1322.17
    MO-12”50.727.2312.2310.4819.34
    MO-16”48.415.3112.2910.5723.42
    MO-20”59.145.2414.903.9216.81
    MO-24”56.702.8315.825.6918.96
    MO-28”40.187.5414.5419.1518.59
    MO-32”28.270.4533.0125.6912.58
    Note: IX / Iall refers to the ratio of the integral area of X-band to the sum of the integral areas of all bands, which represents the content of X-band
    下载: 导出CSV
  • [1] KONDRASHEVA N K, RUDKO V A, NAZARENKO M Y, POVAROV V G, DERKUNSKII I O, KONOPLIN R R, GABDULKHAKOV R R, Influence of parameters of delayed coking process and subsequent calculation on the properties and morphology of petroleum needle coke from decant oil mixture of west siberian oil[J]. Energy Fuels, 2019, 33(7): 6373−6379.
    [2] 刘巍, 高丽娟, 程俊霞, 赵雪飞. FWO法测定混合油的热转化动力学[J]. 炭素技术,2017,36(1):24−27.

    LIU Wei, GAO Li-juan, CHENG Jun-xia, ZHAO Xue-fei. Determination of thermal conversion kinetics of mixed oil by FWO method[J]. Carbon Technol,2017,36(1):24−27.
    [3] 曹寅虎, 刘锋, 杨伟超, 魏保志, 王成扬. 专利视角下针状焦研究进展(Ⅲ)—延迟焦化工艺[J]. 炭素技术,2019,38(5):7−12.

    CAO Yan-hu, LIU Feng, YANG Wei-chao, WEI Bao-zhi, WANG Cheng-yang. Research progress of needle coke from patent perspective (III) - Delayed coking process[J]. Carbon Technol,2019,38(5):7−12.
    [4] CHENG J X, ZHAO X F, GAO L J, ZHU Y M. Thermal conversion mechanism and thermodynamics of mixed oil in coal-based needle coke production[J]. Asia-Pac J Chem Eng,2019,14(5):1−13.
    [5] 程俊霞, 朱亚明, 高丽娟, 赵雪飞. 煤系针状焦生产中混合油的黏流特性与分子结构间关联性的FT-IR解析[J]. 光谱学与光谱分析,2020,40(6):1883−1888.

    CHENG Jun-xia, ZHU Ya-ming, GAO li-juan, ZHAO Xue-fei. FT-IR analysis of correlation between viscosity flow characteristics and molecular structure of mixed oil in production of coal-based needle coke[J]. Spectrosc Spect Anal,2020,40(6):1883−1888.
    [6] 张戈, 熊楚安. 工业生产中影响针状焦形成的主要条件[J]. 炭素,2018,3:43−44.

    ZHANG Ge, XIONG Chu-an. Main conditions affecting the formation of needle coke in industrial production[J]. Carbon (China),2018,3:43−44.
    [7] SAOWADEE N, AGERSTED K, BOWEN J R. Lattice constant measurement from electron backscatter diffraction patterns[J]. J Microsc,2017,266(2):200−210. doi: 10.1111/jmi.12529
    [8] MENDEZ A, SANTAMARIA R, GRANDA M. The effect of the reinforcing carbon on the microstructure of pitch-based granular composites[J]. J Microsc,2010,209(2):81−93.
    [9] BRZOZOWAKA T, ZIELIFLAKI J, MACHNIKOWSKI J. Effect of polymeric additives to coal tar pitch on carbonization behaviour and optical texture of resultant coke[J]. J Anal Appl Pyrolysis,1998,48(1):45−58. doi: 10.1016/S0165-2370(98)00101-6
    [10] ZENOU V Y, SNEJANA B. Microstructural analysis of undoped and moderately Sc-doped TiO2, anatase nanoparticles using Scherrer equation and Debye function analysis[J]. Mater Charact,2018,144:287−296. doi: 10.1016/j.matchar.2018.07.022
    [11] SARKAR A, DASGUPTA K, BARAT P, SATHIYAMOORTHY D. Studies on neon irradiated amorphous carbon using X-ray diffraction technique[J]. Int J Mod Phys B,2008,22(7):865−875. doi: 10.1142/S0217979208038119
    [12] BALACHANDRAN M. Study of stacking structure of amorphous carbon by X-ray diffraction technique[J]. Int J Electrochem Sc,2012,7(4):3127−3134.
    [13] MANOJ B. Investigation of nanocrystalline structure in selected carbonaceous materials[J]. Int J Min Met Mater,2014,21(9):940−946. doi: 10.1007/s12613-014-0993-7
    [14] 任瑞晨, 张乾伟, 石倩倩, 李彩霞, 庞鹤, 董伟. 高变质无烟煤伴生微晶石墨鉴定与分析[J]. 煤炭学报,2016,41(5):1294−1300.

    REN Rui-chen, ZHANG Qian-wei, SHI Qian-qian, LI Cai-xia, PANG He, DONG Wei. Identification and analysis of amorphous graphite associated with high metamorphosed anthracite[J]. J China Coal Soc,2016,41(5):1294−1300.
    [15] HAN W H, CAI Y X, LI X H, WANG J, LI Kang-hua. Raman spectroscopy analysis of carbon structural evolution of diesel particulate matters with the treatment of nonthermal plasma[J]. Spectrosc Spect Anal,2012,32(32):2152−2156.
    [16] SAWARKAR A N, PANDIT A B, SAMANT S D, JOSHI J B. Petroleum residue upgrading via delayed coking: A review[J]. Canadian J Chem Eng,2010,85(1):1−24.
    [17] GUO A, ZHANG X, WANG Z. Simulated delayed coking characteristics of petroleum residues and fractions by thermogravimetry[J]. Fuel Process Technol,2008,89(7):643−650. doi: 10.1016/j.fuproc.2007.12.006
    [18] VEJAHATI F, GUPTA R. Co-Gasification of Oil sand Coke with Coal[M]. New York: Springer Berlin Heidelberg, 2013.
    [19] GUO Y, LI Y, RAN N, FENG G. Co-carbonization effect of asphaltine and heavy oil in mesophase development[J]. J Mater Sci,2016,51(5):2558−2564. doi: 10.1007/s10853-015-9568-x
    [20] MOCHIDA I, MARSH H. Carbonization and liquid-crystal (mesophase) development. 10. The co-carbonization of coals with solvent-refined coals and coal extracts[J]. Fuel,1979,58(9):633−641. doi: 10.1016/0016-2361(79)90216-3
    [21] MOCHIDA I, OYAMA T, KORAI Y. Formation scheme of needle coke from FCC-decant oil[J]. Carbon,1988,26(1):49−55. doi: 10.1016/0008-6223(88)90008-5
    [22] ELKANZI E M, MARHOON F S, JASIM M J. Kinetic analysis of the coke calcination processes in rotary kilns[J]. Engineering,2014,256:45−54.
    [23] 张德保, 申海平, 范启明. 针状焦制备过程中的中间相研究进展[J]. 化工进展,2012,311(2):175−181.

    ZHANG De-bao, SHEN Hai-ping, FAN Qi-ming. Research advances about mesophase in needle coke preparation[J]. Chem Ind Eng Prog,2012,311(2):175−181.
    [24] SANTAMARIA-RAMIREZ R, ROMERO-PALAZON E, GOMEZ-DE-SALAZAR C, RODRIGUEZ-REINOSO F, MARTINEZ-SAEZ S, MARTINEZ-ESCANDELL M, MARSH H. Influence of pressure variations on the formation and development of mesophase in a petroleum residue[J]. Carbon,1999,37(3):445−455. doi: 10.1016/S0008-6223(98)00211-5
    [25] OBARA T, YOKONA T, MIYAZAWA K, SANADA Y. Carbonization behavior of hydrogenated ethylene tar pitch[J]. Carbon,1981,19(4):263−267. doi: 10.1016/0008-6223(81)90071-3
    [26] MENENDEZ R, FERREIRE M G, BERMEJO J, MARSH H. The development of mesophase in coal tar and petroleum pitches characterized by extrography[J]. Fuel,1994,73(1):25−34. doi: 10.1016/0016-2361(94)90184-8
    [27] TAYLOR G H, PENNOCK G M, GERALD J D F, BRUNCKHORST L F. Influence of QI on mesophase structure[J]. Carbon,1993,31(2):341−354. doi: 10.1016/0008-6223(93)90039-D
    [28] ZHU Y M, HU C S, XU Y L, ZHAO C L, YIN X T, ZHAO X F. Preparation and Characterization of Coal Pitch-Based Needle Coke (Part II): The Effects of β resin in refined coal pitch[J]. Energy Fuels,2020,34(2):2126−2134.
    [29] 张怀平, 吕春祥, 李开喜, 刘春林, 凌立成. 针状焦的结构和原料[J]. 煤炭转化,2001,24(2):22−26.

    ZhANG Huai-ping, LV Chun-xiang, LI Kai-xi, LIU Chu-lin, LING Li-cheng. Structure and raw materials of needle coke[J]. Coal Convers,2001,24(2):22−26.
    [30] SHEN S G, ZHANG J, LI J J, QIN H F, ZHAO Z J. The influence of adding modified pitch and phenol residue to coal blends on coke microcrystalline size[J]. Appl Mech Mater,2011,71:2331−2335.
    [31] MATEOS J M J, ROMERO E, SALAZAR C G D. XRD study of petroleum cokes by line profile analysis: Relations among heat treatment, structure, and sulphur content[J]. Carbon,1993,31(7):1159−1178. doi: 10.1016/0008-6223(93)90069-M
    [32] LI K, LIU Q, CHENG H, Hu M, ZHANG S. Classification and carbon structural transformation from anthracite to natural coaly graphite by XRD, Raman spectroscopy, and HRTEM[J]. Spectrochim Acta A,2021,249(15):1−15.
    [33] LOEH M O, BADACZEWSKI F, FABER K, HINTNER S, BERTINO M F, MUELLER P, METZ J, SMARSLY B M. Analysis of thermally induced changes in the structure of coal tar pitches by an advanced evaluation method of X-ray scattering data[J]. Carbon,2016,109:823−835. doi: 10.1016/j.carbon.2016.08.031
    [34] ALAREZ A G, ESCANDELL M M, MOLINA S M, RODRGUEZ-REINOSO F. Pyrolysis of petroleum residues: analysis of semicokes by X-ray diffraction[J]. Carbon,1999,37(10):1627−1632. doi: 10.1016/S0008-6223(99)00085-8
    [35] Sadezky A, Muckenhuber H, Grothe H, Niessner, RPöschl U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information[J]. Carbon,2005,43(8):1731−1742. doi: 10.1016/j.carbon.2005.02.018
    [36] RIBEIRO-SOARES J, CANCADO L G, FALCAO N, F. ERREIRA E H M, ACHETE C A. use of Raman spectroscopy to characterize the carbon materials found in Amazonian anthrosoils[J]. J Ranan Spectrosc,2013,44(2):283−289. doi: 10.1002/jrs.4191
    [37] ZHANG Y, KANG X, TAN J, FROSTL R L. Influence of calcination and acidification on structural characterization of Anyang anthracites[J]. Energy Fuels,2013,27(11):7191−7197.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  609
  • HTML全文浏览量:  324
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-25
  • 修回日期:  2021-03-13
  • 网络出版日期:  2021-04-09
  • 刊出日期:  2021-08-31

目录

    /

    返回文章
    返回