留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

回收利用煤矸石低成本制备Ni/C/CG复合型吸波材料

梁丽萍 高飞 王亚珂 朱保顺 力国民

梁丽萍, 高飞, 王亚珂, 朱保顺, 力国民. 回收利用煤矸石低成本制备Ni/C/CG复合型吸波材料[J]. 燃料化学学报(中英文), 2022, 50(1): 36-43. doi: 10.19906/j.cnki.JFCT.2021066
引用本文: 梁丽萍, 高飞, 王亚珂, 朱保顺, 力国民. 回收利用煤矸石低成本制备Ni/C/CG复合型吸波材料[J]. 燃料化学学报(中英文), 2022, 50(1): 36-43. doi: 10.19906/j.cnki.JFCT.2021066
LIANG Li-ping, GAO Fei, WANG Ya-ke, ZHU Bao-shun, LI Guo-min. Low-cost preparation of Ni/C/CG composites for microwave absorption by recycling coal gangue[J]. Journal of Fuel Chemistry and Technology, 2022, 50(1): 36-43. doi: 10.19906/j.cnki.JFCT.2021066
Citation: LIANG Li-ping, GAO Fei, WANG Ya-ke, ZHU Bao-shun, LI Guo-min. Low-cost preparation of Ni/C/CG composites for microwave absorption by recycling coal gangue[J]. Journal of Fuel Chemistry and Technology, 2022, 50(1): 36-43. doi: 10.19906/j.cnki.JFCT.2021066

回收利用煤矸石低成本制备Ni/C/CG复合型吸波材料

doi: 10.19906/j.cnki.JFCT.2021066
基金项目: 国家自然科学基金(51802212),山西省自然科学基金(201801D221119),山西省高等学校科技创新项目(2019L0617)和山西省研究生优秀创新项目(2020SY415)资助
详细信息
    通讯作者:

    E-mail: liangliping@tyust.edu.cn

    ligm@tyust.edu.cn

  • 中图分类号: TB34

Low-cost preparation of Ni/C/CG composites for microwave absorption by recycling coal gangue

Funds: The project was supported by the National Natural Science Foundation of China (51802212), the Natural Science Foundation of Shanxi Province (201801D221119), the Scientific and Technological Innovation Programs of High Education Institutions in Shanxi (2019L0617) and Shanxi Postgraduate Innovation Project (2020SY415)
  • 摘要: 采用煤矸石(CG)作含碳载体、淀粉作补充C源、硝酸镍作Ni源,借助液相浸渍结合碳热还原工艺制备Ni/C/CG复合型微波吸收材料;研究碳热还原温度对材料组成、微观结构与性能的影响。结果表明,碳热还原温度会影响碳与Ni的结晶状态及Ni微粒大小,进而对材料的电磁性能特别是介电性能产生显著影响。得益于良好的阻抗匹配特性与强的微波衰减能力,在600−800 ℃较宽的温度范围内制备得到的Ni/C/CG复合材料均显示出优良的微波吸收性能。其中,800 ℃热处理样品的最低反射损耗可达−20.9 dB,相应的有效带宽为3.8 GHz(测试涂层厚度为2 mm)。介电损耗是主要的微波吸收机制,主要源于材料中石墨化的碳与Ni微粒所引起的漏导损耗及各组元间界面带来的界面极化损耗。
  • FIG. 1235.  FIG. 1235.

    FIG. 1235.  FIG. 1235.

    图  1  样品的XRD谱图

    Figure  1  XRD patterns of the samples

    图  2  样品的拉曼散射光谱谱图

    Figure  2  Raman spectra of the samples

    图  3  典型样品的SEM照片

    Figure  3  SEM images of the typical samples

    (a): CG; (b): NiCG-400; (c): NiCG-600; (d): NiCG-700; (e): NiCG-800

    图  4  典型样品NiCG-600的元素分布

    Figure  4  Elemental mappings of the typical sample NiCG-600

    Al (a), Si (b), O (c), Ni (d) and C (e)

    图  5  典型样品的反射损耗曲线

    Figure  5  Reflection loss curves of the typical samples

    (a): NiCG-400; (b): NiCG-600; (c): NiCG-700; (d): NiCG-800

    图  6  典型样品的阻抗匹配特性(Z = |Zin/Z0|)

    Figure  6  Impedance-matching characteristic (Z = |Zin/Z0|) of the typical samples

    (a): NiCG-400; (b): NiCG-600; (c): NiCG-700; (d): NiCG-800

    图  7  样品的衰减常数(a)与损耗因子(b)随频率的变化

    Figure  7  Frequency dependency curves of the attenuation constant α (a) and loss tangent (b) of the samples

    图  8  样品的复介电常数随频率变化与Cole-Cole半圆

    Figure  8  Frequency dependence of permittivity (a) and (b) and Cole-Cole semicircles of samples (c)

    图  9  样品的复磁导率随频率的变化(a)和(b)与μ″(μ′)−2f −1值随频率的变化(c)

    Figure  9  Frequency dependence of permeability (a) and (b) and μ″(μ′)−2f−1 versus frequency (c) of samples

    表  1  酸洗前后煤矸石XRFS分析

    Table  1  XRFS analysis results of coal gangue samples before and after pickling

    ElementSiAlSKCaFeTi
    Before pickling41.83727.7953.2892.1814.03317.5991.235
    After pickling56.52429.2114.5773.2440.3432.8341.963
    下载: 导出CSV
  • [1] GENUIS S J. Fielding a current idea: Exploring the public health impact of electromagnetic radiation[J]. Public Health,2008,122:113−124. doi: 10.1016/j.puhe.2007.04.008
    [2] 陈雪刚, 叶瑛, 程继鹏. 电磁波吸收材料的研究进展[J]. 无机材料学报,2011,26(5):449−457. doi: 10.3724/SP.J.1077.2011.00449

    CHEN Xue-gang, YE Ying, CHENG Ji-peng. Research progress of electromagnetic wave absorbing materials with core-shell structure[J]. J Inorg Mater,2011,26(5):449−457. doi: 10.3724/SP.J.1077.2011.00449
    [3] 康越, 原博, 马天, 楚增勇, 张政军. 基于石墨烯的电磁波损耗材料研究进展[J]. 无机材料学报,2018,33(12):1259−1273. doi: 10.15541/jim20180178

    KANG Yue, YUAN Bo, MA Tian, CHU Zeng-yong, ZHANG Zheng-jun. Development of microwave absorbing materials based on graphene[J]. J Inorg Mater,2018,33(12):1259−1273. doi: 10.15541/jim20180178
    [4] 何学敏, 钟伟, 都有为. 核壳结构磁性复合纳米材料的可控合成与性能[J]. 物理学报,2018,67(22):9−28+438.

    HE Xue-min, ZHONG Wei, DU You-wei. Controllable synthesis and performance of magnetic nanocomposites with core-shell structure[J]. Acta Phys Sin,2018,67(22):9−28+438.
    [5] 曹敏, 邓雨希, 徐康, 郝晓峰, 胡嘉裕, 杨喜. 新型碳基磁性复合吸波材料的研究进展[J]. 复合材料学报,2020,37(12):3004−3016.

    CAO Min, DENG Yu-xi, XU Kang, HAO Xiao-feng, HU Jia-yu, YANG Xi. Research progress of new carbon based magnetic composite electromagnetic waveabsorbing materials[J]. Acta Mater Compos Sin,2020,37(12):3004−3016.
    [6] WANG Z J, WU L N, ZHOU J G, CAI W, SHEN B Z, JIANG Z H. Magnetite nanocrystals on multiwalled carbon nanotubes as a synergistic microwave absorber[J]. J Phys Chem C,2013,117(10):5446−5452. doi: 10.1021/jp4000544
    [7] WANG L N, JIA X L, LI Y F, YANG F, ZHANG L Q, LIU L P, REN X, YANG H T. Synthesis and microwave absorption property of flexible magnetic film based on graphene oxide/carbon nanotubes and Fe3O4 nanoparticles[J]. J Mater Chem A,2014,2(36):14940−14946. doi: 10.1039/C4TA02815E
    [8] ZHOU P P, WANG X K, WANG L X, ZHANG J, SONG Z, QIU X, YU M X, ZHANG Q T. Walnut shell-derived nanoporous carbon@Fe3O4 composites for outstanding microwave absorption performance[J]. J Alloy Compd,2019,805:1071−1080. doi: 10.1016/j.jallcom.2019.07.177
    [9] LIU L, HE N, WU T, HU P B, TONG G X. Co/C/Fe/C Hierarchical flowers with strawberry-like surface as surface plasmon for Enhanced permittivity, permeability, and microwave absorption properties[J]. Chem Eng J,2019,355:103−108. doi: 10.1016/j.cej.2018.08.131
    [10] SHAN G, YANG S H, WANG H Y, WANG G S, YIN P G. Excellent electromagnetic wave absorbing properties of two-dimensional carbon-based nanocomposite supported by transition metal carbides Fe3C[J]. Carbon,2020,162:439−444.
    [11] LI J Y, WANG J M. Comprehensive utilization and environmental risks of coal gangue: A review[J]. J Clean Prod,2019,239:117946. doi: 10.1016/j.jclepro.2019.117946
    [12] YAN S, ZHANG F Y, WANG L, RONG Y D, HE P G, JIA D C, YANG J L. A green and low-cost hollow gangue microsphere/geopolymer adsorbent for the effective removal of heavy metals from wastewaters[J]. J Environ Manage,2019,246:174−183. doi: 10.1016/j.jenvman.2019.05.120
    [13] LI G M, MAO L T, Zhu B S, CHANG X, WANG Y K, WANG G Z, ZHANG K W, TIAN Y M, LIANG L P. Novel ceramic-based microwave absorbents derived from gangue[J]. J Mater Chem C,2020,8(40):14238−14245. doi: 10.1039/D0TC03633A
    [14] 田君儒, 王晓敏, 梁丽萍, 力国民. 利用煤矸石制备负载Fe3O4的陶瓷复合材料及微波吸收性能研究[J]. 燃料化学学报,2021,49(9):1347−1353.

    TIAN Jun-ru, WANG Xiao-min, LIANG Li-ping, LI Guo-min. Preparation and Microwave Absorption of Fe3O4 Loaded Ceramic Composite by Recycling of Coal Gangue[J]. J Fuel Chem Technol,2021,49(9):1347−1353.
    [15] SHU R W, WU Y, LI Z Y, ZHANG J B, WAN Z L, LIU Y, ZHENG M D. Facile synthesis of cobalt-zinc ferrite microspheres decorated nitrogen-doped multi-walled carbon nanotubes hybrid composites with excellent microwave absorption in the X-band[J]. Compos Sci Technol,2019,184:107839. doi: 10.1016/j.compscitech.2019.107839
    [16] YANG S, GUO X, CHEN P, XU D W, QIU H F, ZHU X Y. Two-step synthesis of self-assembled 3D graphene/shuttle-shaped zinc oxide (ZnO) nanocomposites for high-performance microwave absorption[J]. J Alloys Compd,2019,797:1310−1319. doi: 10.1016/j.jallcom.2019.05.190
    [17] MA T, CUI Y, SHA Y L, LIU L, GE J W, MENG F D, WANG F H. Facile synthesis of hierarchically porous rGO/MnZn ferrite composites for enhanced microwave absorption performance[J]. Synth Met,2020,265:116407. doi: 10.1016/j.synthmet.2020.116407
    [18] MU J, PERLMUTTER D D. Thermal decomposition of metal nitrates and their hydrates[J]. Thermochim Acta,1982,56(3):253−260. doi: 10.1016/0040-6031(82)87033-0
    [19] LUO N, LI X J, WANG X H, YAN H H, ZHANG C J, WANG H T. Synthesis and characterization of carbon-encapsulated iron/iron carbide nanoparticles by a detonation method[J]. Carbon,2010,48(13):3858−3863. doi: 10.1016/j.carbon.2010.06.051
    [20] FERRARI A C, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Phys Rev B,2000,61:14095−14107. doi: 10.1103/PhysRevB.61.14095
    [21] 张立德, 牟季美. 纳米材料和纳米结构[M]. 北京: 科学出版社, 2020: 227−232.

    ZHANG Li-de, MOU Ji-mei. Nanomaterials and Nanostructures[M]. Beijing: Science Press, 2020: 227−232.
    [22] 冯慈璋, 马西奎. 工程电磁场导论[M]. 北京: 高等教育出版社, 2000: 215−257.

    FENG Ci-zhang, MA Xi-kui. Introduction to Engineering Electromagnetic Field[M]. Beijing: Higher Education Press, 2000: 215−257.
    [23] 陈季丹, 刘子玉. 电介质物理学[M]. 北京: 机械工业出版社, 1982: 138−185.

    CHEN Ji-dan, LIU Zi-yu. Dielectric Physics[M]. Beijing: China Machine Press, 1982: 138−185.
    [24] XU X F, WANG G Z, WAN G P, SHI S H, HAO C C, TANG Y L, WANG G L. Magnetic Ni/graphene connected with conductive carbon nano-onions or nanotubes by atomic layer deposition for lightweight and low-frequency microwave absorption[J]. Chem Eng J,2020,382:122980. doi: 10.1016/j.cej.2019.122980
    [25] WANG F Y, SUN Y Q, LI D R, ZHONG B, WU Z G, ZUO S Y, YAN D, ZHUO R F, FENG J J, YAN P X. Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning[J]. Carbon,2018,134:264−273. doi: 10.1016/j.carbon.2018.03.081
    [26] LIU Q T, LIU X F, FENG H B, SHUI H C, YU R H. Metal organic framework-derived fe/carbon porous composite with low Fe content for lightweight and highly efficient electromagnetic wave absorber[J]. Chem Eng J,2017,314(15):320−327.
    [27] DENG L J, HAN M G. Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability[J]. Appl Phys Lett,2007,91:023119. doi: 10.1063/1.2755875
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  677
  • HTML全文浏览量:  206
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-27
  • 修回日期:  2021-06-28
  • 网络出版日期:  2021-07-19
  • 刊出日期:  2022-01-25

目录

    /

    返回文章
    返回