留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

卤素原子对卤氧化铋(BiOXX = Cl、Br、I)光催化性能的影响

赵立业 李恒 王亮 李春虎

赵立业, 李恒, 王亮, 李春虎. 卤素原子对卤氧化铋(BiOX,X = Cl、Br、I)光催化性能的影响[J]. 燃料化学学报(中英文), 2022, 50(1): 122-128. doi: 10.19906/j.cnki.JFCT.2021067
引用本文: 赵立业, 李恒, 王亮, 李春虎. 卤素原子对卤氧化铋(BiOXX = Cl、Br、I)光催化性能的影响[J]. 燃料化学学报(中英文), 2022, 50(1): 122-128. doi: 10.19906/j.cnki.JFCT.2021067
ZHAO Li-ye, LI Heng, WANG Liang, LI Chun-hu. Effect of halogen atoms on photocatalytic activity of bismuth oxyhalide (BIOX, X = Cl, Br, I)[J]. Journal of Fuel Chemistry and Technology, 2022, 50(1): 122-128. doi: 10.19906/j.cnki.JFCT.2021067
Citation: ZHAO Li-ye, LI Heng, WANG Liang, LI Chun-hu. Effect of halogen atoms on photocatalytic activity of bismuth oxyhalide (BIOX, X = Cl, Br, I)[J]. Journal of Fuel Chemistry and Technology, 2022, 50(1): 122-128. doi: 10.19906/j.cnki.JFCT.2021067

卤素原子对卤氧化铋(BiOXX = Cl、Br、I)光催化性能的影响

doi: 10.19906/j.cnki.JFCT.2021067
详细信息
    通讯作者:

    Tel: 0532-66782502, E-mail: liheng@ouc.edu.cn

    wangliang_good@163.com

  • 中图分类号: TQ426.9

Effect of halogen atoms on photocatalytic activity of bismuth oxyhalide (BIOX, X = Cl, Br, I)

  • 摘要: 利用水热法和溶剂热法制备了BiOCl、BiOBr和BiOI三种光催化剂,通过XRD、SEM、光电流密度与UV-vis DRS表征了光催化剂的晶体结构、表面形貌与光电性能,DFT计算结果表明,随着卤素原子序数升高,光催化剂导带附近的费米能级的分散度降低,禁带宽度变小。在可见光照射下,通过水溶液中罗丹明B的降解效果来评价光催化剂的光催化活性,BiOI具有最好的光催化活性,60 min内,罗丹明B的降解效率达到100%,同时通过自由基捕获实验探究了卤氧化铋光催化降解过程的主要活性基团。
  • FIG. 1245.  FIG. 1245.

    FIG. 1245.  FIG. 1245.

    图  1  BiOBr、BiOCl和BiOI的XRD谱图

    Figure  1  XRD patterns of BiOBr, BiOCl and BiOI

    图  2  BiOBr (a)、BiOCl (b)和BiOI (c)的SEM照片

    Figure  2  SEM images of BiOBr (a), BiOCl (b) and BiOI (c)

    图  3  BiOBr、BiOCl和BiOI的(a)紫外-可见漫反射光谱和(b)禁带宽度外推图

    Figure  3  (a) UV-vis DRS and (b) plots of (αhv)1/2 versus energy (hv) for the band gap energies of BiOBr, BiOCl and BiOI

    图  4  BiOBr、BiOCl和BiOI的(a)Mott-Schottky曲线和(b)在pH = 0处的能带结构图

    Figure  4  Photoanode Mott-Schottky plots (a) and the derived energy band diagrams vs at pH = 0 (b) of the BiOBr, BiOCl and BiOI

    图  5  BiOBr、BiOCl和BiOI的光电流曲线

    Figure  5  Transient photocurrent responses (I-t) of the BiOBr, BiOCl and BiOI

    图  6  BiOBr、BiOCl和BiOI的能带结构和态密度

    Figure  6  Band structure and density of states of the BiOBr, BiOCl and BiOI

    图  7  可见光催化降解RhB溶液

    Figure  7  Photocatalytic degradation of RhB under visible light irradiation

    图  8  光催化降解RhB的自由基捕获实验(a) BiOBr , (b) BiOCl和(c) BiOI

    Figure  8  Photocatalytic degradation of RhB in the presence of various scavengers: (a) BiOBr, (b) BiOCl and (c) BiOI

    表  1  BiOBr、BiOCl和BiOI的一级反应动力学参数

    Table  1  First-order reaction kinetic parameters of BiOBr, BiOCl and BiOI

    SampleBiOBrBiOClBiOI
    k/min−10.0100.01880.0649
    R20.9820.9930.997
    下载: 导出CSV
  • [1] FENG X F, YU Z X, SUN Y X, LONG RX, SHAN M Y, LI X H, LIU Y C, LIU J H. Review MXenes as a new type of nanomaterial for environmental applications in the photocatalytic degradation of water pollutants[J]. Ceram Int,2020,47(6):7321−7343.
    [2] 祝泽周. 界面位点调控光/电催化CO2还原性能研究[D]. 合肥: 中国科学技术大学, 2020.

    ZHU Ze-zhou. Engineering the interface sites for photocatalytic/electrocatalytic CO2 reduction[D]. Hefei: University of Science and Technology of China, 2020.
    [3] AHMAD K, GHATAK H R, AHUJA S M. A review on photocatalytic remediation of environmental pollutants and H2 production through water splitting: A sustainable approach[J]. Environ Technol Innovation,2020,19:100893.
    [4] FUJISHIMA, A., HONDA, K. Photolysis of water at a semiconductor electrode[J]. Nature,1972,238:37−38. doi: 10.1038/238037a0
    [5] 杨帆. 氧化钛复合材料的结构精确调控及其光催化性能研究[D]. 合肥: 中国科学技术大学, 2020.

    YANG Fan. Precise structure control of TiO2 composite materials and its photocatalytic performance[D]. Hefei: University of Science and Technology of China, 2020.
    [6] HUANG X J, GUO Q B, YAN B C, LIU H, CHEN K, WEI S S, WU Y H, WANG L. Study on photocatalytic degradation of phenol by BiOI/Bi2WO6 layered heterojunction synthesized by hydrothermal method[J]. J Mol Liq,2021,322:114965. doi: 10.1016/j.molliq.2020.114965
    [7] LIU H J, WANG B J, CHEN M, ZHANG H, PENG J B, DING L, WANG W F. Simple synthesis of BiOAc/BiOBr heterojunction composites for the efficient photocatalytic removal of organic pollutants[J]. Sep Purif Technol,2021,261:118286. doi: 10.1016/j.seppur.2020.118286
    [8] MOKHTARI F, TAHMASEBI N. Hydrothermal synthesis of W-doped BiOCl nanoplates for photocatalytic degradation of rhodamine B under visible light[J]. J Phys Chem Solids,2021,149:109804. doi: 10.1016/j.jpcs.2020.109804
    [9] WANG Y, SUNARSO J, ZHAO B, GE C H, CHNE G H. One-dimensional BiOBr nanosheets/TiO2 nanofibers composite: Controllable synthesis and enhanced visible photocatalytic activity[J]. Ceram Int,2017,43(17):15769−15776. doi: 10.1016/j.ceramint.2017.08.140
    [10] YE L Q, JIN X L, LENG Y M, SU Y R, XIE H Q, LIU C. Synthesis of black ultrathin BiOCl nanosheets for efficient photocatalytic H2 production under visible light irradiation[J]. J Power Sources,2015,293:409−415. doi: 10.1016/j.jpowsour.2015.05.101
    [11] CUI Y H, YANG L L, ZHENG J, WANG Z K, LI B R, YAN Y, MENG M J. Synergistic interaction of Z-scheme 2D/3D g-C3N4/BiOI heterojunction and porous PVDF membrane for greatly improving the photodegradation efficiency of tetracycline[J]. J Colloid Interf Sci,2021,586:335−348. doi: 10.1016/j.jcis.2020.10.097
    [12] BARHOUMI M, SAID M. Correction of band-gap energy and dielectric function of BiOX bulk with GW and BSE[J]. Optik,2020,216:164631. doi: 10.1016/j.ijleo.2020.164631
    [13] YE L Q, DENG K J, XU F, TIAN LH, PENG T Y, ZAN L. Increasing visible-light absorption for photocatalysis with black BiOCl[J]. Chem Chem Phys, 2012, 14: 82–85.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  481
  • HTML全文浏览量:  251
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-28
  • 修回日期:  2021-06-21
  • 网络出版日期:  2021-07-16
  • 刊出日期:  2022-01-25

目录

    /

    返回文章
    返回