留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mo2C/ZnIn2S4复合材料的制备及其光催化产氢性能研究

刘超 谢潇琪 范鹏凯 李艳

刘超, 谢潇琪, 范鹏凯, 李艳. Mo2C/ZnIn2S4复合材料的制备及其光催化产氢性能研究[J]. 燃料化学学报(中英文), 2022, 50(8): 1075-1083. doi: 10.19906/j.cnki.JFCT.2022021
引用本文: 刘超, 谢潇琪, 范鹏凯, 李艳. Mo2C/ZnIn2S4复合材料的制备及其光催化产氢性能研究[J]. 燃料化学学报(中英文), 2022, 50(8): 1075-1083. doi: 10.19906/j.cnki.JFCT.2022021
LIU Chao, XIE Xiao-qi, FAN Peng-kai, LI Yan. Synthesis of Mo2C/ZnIn2S4 composite and its efficient photocatalytic hydrogen evolution activity[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 1075-1083. doi: 10.19906/j.cnki.JFCT.2022021
Citation: LIU Chao, XIE Xiao-qi, FAN Peng-kai, LI Yan. Synthesis of Mo2C/ZnIn2S4 composite and its efficient photocatalytic hydrogen evolution activity[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 1075-1083. doi: 10.19906/j.cnki.JFCT.2022021

Mo2C/ZnIn2S4复合材料的制备及其光催化产氢性能研究

doi: 10.19906/j.cnki.JFCT.2022021
基金项目: 河北省自然科学基金(B2016403011,B2020208009)和河北省高等学校科学技术研究重点项目(ZD2017012)资助
详细信息
    通讯作者:

    Tel: 13931157532,E-mail: yikeschao@126.com

  • 中图分类号: O644.1;O643.36

Synthesis of Mo2C/ZnIn2S4 composite and its efficient photocatalytic hydrogen evolution activity

Funds: The project was supported by Natural Science Foundation of Hebei Province (B2016403011, B2020208009) and Natural Science Research Major Project in University of Hebei Province (ZD2017012).
More Information
  • 摘要: 以钼酸铵和二氰二胺为原料,通过高温固相法制备了Mo2C。以合成的Mo2C为原料,通过原位法合成了Mo2C/ZnIn2S4复合光催化材料。利用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电镜(SEM)、紫外可见漫反射(UV-vis)、开尔文探针(KP)等对材料的组成、结构和性能进行了表征。结果表明, ZnIn2S4在Mo2C颗粒表面原位生长并形成异质结。Mo2C/ZnIn2S4复合材料析氢速率可达到1.33 mmol/(g·h),是纯ZnIn2S4析氢速率的5.1倍。光催化机理分析认为,Mo2C作为助催化剂具有类金属特性,较高的导电性能和高的表面功函,与ZnIn2S4形成Mo2C/ZnIn2S4异质界面后,可以有效促进ZnIn2S4光生电荷的分离和迁移。同时,由于Mo2C较低的析氢过电位使其成为析氢反应的活性位点,有效降低了ZnIn2S4在析氢反应中的过电势,进而提高材料的光催化析氢性能。
  • FIG. 1777.  FIG. 1777.

    FIG. 1777.  FIG. 1777.

    图  1  Mo2C,ZnIn2S4和MC/ZIS的XRD谱图

    Figure  1  XRD patterns of Mo2C, ZnIn2S4 and MC/ZIS composites

    图  2  Mo2C、ZIS和10%MC/ZIS的SEM照片

    Figure  2  SEM images of Mo2C (a), ZIS (b) and 10%MC/ZIS (c)

    图  3  (a)紫外可见漫反射吸收光谱;(b) ZnIn2S4的Kubelka-Munk函数变换光谱;(c) ZnIn2S4的价带谱;(d) Mo2C的价带谱

    Figure  3  Ultraviolet visible diffuse reflectance absorption spectrum (a), Kubelka-Munk function transform spectrum of ZnIn2S4 (b) and valence band spectrum of ZnIn2S4 (c) and Mo2C (d)

    图  4  样品XPS能谱图

    Figure  4  XPS spectra of survey (a), Mo 3d (b), C 1s (c) for Mo2C and Mo2C/ZnIn2S4, Zn 2p (d) and In 3d (e), In 3d and S 2p (f) for ZnIn2S4和Mo2C/ZnIn2S4

    图  5  (a) ZIS和MC/ZIS的瞬态光电流响应谱图;(b) EIS谱图;(c) PL谱图;(d) LSV曲线

    Figure  5  Transient photocurrent response spectra (a), EIS specta (b) , PL spectra (c) and LSV curves (d) of ZIS and MC/ZIS

    图  6  (a) 不同Mo2C负载量MC/ZIS产氢速率,(b) 10%MC/ZIS的光催化产氢循环实验

    Figure  6  MC/ZIS hydrogen production diagram (a) with different loading of Mo2C and 10% MC/ZIS photocatalytic hydrogen production cycle experiment diagram (b)

    图  7  ZIS和MC的功函谱图

    Figure  7  Work function maps of ZIS and MC

    图  8  Mo2C/ZnIn2S4 复合光催化剂的光催化析氢机制

    Figure  8  Photocatalytic hydrogen evolution mechanism of Mo2C/ZnIn2S4 composite photocatalyst

  • [1] 李乃旭, 黄美优, 周建成, 刘茂昌, 敬登伟. MgO和Au纳米颗粒共修饰g-C3N4光催化剂增强CO2-H2O光催化反应过程[J]. 催化学报,2021,42(5):781−794. doi: 10.1016/S1872-2067(20)63690-7

    (LI Nai-xu, HUANG Mei-you, ZHOU Jian-cheng, LIU Mao-chang, JING Deng-wei. MgO and Au nanoparticle Co-modified g-C3N4 photocatalysts for enhanced photoreduction of CO2 with H2O[J]. Chin J Catal,2021,42(5):781−794. doi: 10.1016/S1872-2067(20)63690-7
    [2] ZHANG L, RAN J, QIAO S Z, JARONIEC M. Characterization of semiconductor photocatalysts[J]. Chem Soc Rev,2019,48(20):5184−5206. doi: 10.1039/C9CS00172G
    [3] WOLFF C M, FRISCHMANN P D, MARCUS S, BOHN B J, ROBIN W, PANAJOTIS L, CARLSON M T, FRANK J, JOCHEN F, FRANK W. All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods[J]. Nat Energy,2018,3:862−869. doi: 10.1038/s41560-018-0229-6
    [4] LANDMAN A, DOTAN H, SHTER G E, WULLENKORD M, HOUAIJIA A, MALJUSCH A, GRADER G S, ROTHSCHILLD A. Photoelectrochemical water splitting in separate oxygen and hydrogen cells[J]. Nat Mater,2017,16:646−651. doi: 10.1038/nmat4876
    [5] YU J, RANG J. Facile preparation and enhanced photocatalytic H2-production activity of Cu(OH)2 cluster modified TiO2[J]. Energy Environ Sci,2011,4(4):1364−1371. doi: 10.1039/c0ee00729c
    [6] SONG Y, ZHANG J, DONG X, LI H. A review and recent developments in full spectrum photocatalysis using ZnIn2S4-based photocatalysts[J]. Energy Technol-Ger,2021,9(5):2100033. doi: 10.1002/ente.202100033
    [7] CHEN X, SHEN S, GUO L, MAO S. Semiconductor-based photocatalytic hydrogen generation[J]. Chem Rev,2010,110(11):6503−6570. doi: 10.1021/cr1001645
    [8] YIN X-L, LI L-L, JIANG W-J, ZHANG Y, ZHANG X, WAN L-J, HU J-S. MoS2/CdS nanosheets-on-nanorod heterostructure for highly efficient photocatalytic H2 generation under visible light irradiation[J]. ACS Appl Mater Inter,2016,8(24):15258−15266. doi: 10.1021/acsami.6b02687
    [9] ZHANG K, GUO L. Metal sulphide semiconductors for photocatalytic hydrogen production[J]. Catal Sci Technol,2013,3(7):1672−1690. doi: 10.1039/c3cy00018d
    [10] WANG J, SUN S, ZHOU R, LI Y, HE Z, DING H, CHEN D, AO W. A review: Synthesis, modification and photocatalytic applications of ZnIn2S4[J]. J Mater Sci Technol,2021,78:1−19. doi: 10.1016/j.jmst.2020.09.045
    [11] GAO Y, QIAN K, XU B T, DING F, DRAGUTAN V, DRAGUTAN I, SUN Y G, XU Z H. Designing 2D-2D g-C3N4/Ag: ZnIn2S4 nanocomposites for the high-performance conversion of sunlight energy into hydrogen fuel and the meaningful reduction of pollution[J]. RSC Adv,2020,10(54):32652−32661. doi: 10.1039/D0RA06226J
    [12] WANG M, HUANG S, PANG X, SONG M, DU C, SU Y. Switching charge kinetics from type-I to Z-scheme for g-C3N4 and ZnIn2S4 by defective engineering for efficient and durable hydrogen evolution[J]. Sustainable Energy Fuels,2019,3(12):3422−3429. doi: 10.1039/C9SE00639G
    [13] FENG T, ZHAO K, LI H, WANG W, DONG B, CAO L. Constructing a 2D/2D heterojunction of MoSe2/ZnIn2S4 nanosheets for enhanced photocatalytic hydrogen evolution[J]. CrystEngComm,2021,23(13):2547−2555. doi: 10.1039/D0CE01808B
    [14] SCHLATTER J C, OYAMA S T, METCALFE J E, LAMBERT J M. Catalytic behavior of selected transition metal carbides, nitrides, and borides in the hydrodenitrogenation of quinoline[J]. Indust Eng Chem Res,1988,27:1648−1653. doi: 10.1021/ie00081a014
    [15] ZHOU Y, WANG W, ZHANG C, HUANG D, HE D. Sustainable hydrogen production by molybdenum carbide-based efficient photocatalysts: From properties to mechanism[J]. Adv Colloid Interface Sci,2020,279:102144. doi: 10.1016/j.cis.2020.102144
    [16] WANG Y, HONG W, JIAN C, HE X, CAI Q, LIU W. The intrinsic hydrogen evolution performance of 2D molybdenum carbide[J]. J Mater Chem A,2020,8(45):24204−24211. doi: 10.1039/D0TA09451J
    [17] DU C, YAN B, YANG G. Self-integrated effects of 2D ZnIn2S4 and amorphous Mo2C nanoparticles composite for promoting solar hydrogen generation[J]. Nano Energy,2020,76:105031. doi: 10.1016/j.nanoen.2020.105031
    [18] WANG B, DING Y, DENG Z, LI Z. Rational design of ternary NiS/CQDs/ZnIn2S4 nanocomposites as efficient noble-metal-free photocatalyst for hydrogen evolution under visible light[J]. Chin J Catal,2019,40(3):335−342. doi: 10.1016/S1872-2067(18)63159-6
    [19] 魏清莲, 穆帅, 严亚, 吕瑛, 康诗钊, 穆劲. ZnIn2S4的制备及其表面活性剂辅助的形貌控制生长[J]. 无机化学学报,2010,26(2):269−273.

    WEI Qing-lian, MU Shuai, YAN Ya, LV Ying, KANG Shi-zhao, MU Jin. Preparation and surfactant-assisted morphology-controllable growth of ZnIn2S4[J]. Chin J Inorg Chem,2010,26(2):269−273.
    [20] WANG S B, GUAN B Y, WANG X, WEN X, LOU D. Formation of hierarchical Co9S8@ZnIn2S4 heterostructured cages as an efficient photocatalyst for hydrogen evolution[J]. J Am Chem Soc,2018,140(45):15145−15148. doi: 10.1021/jacs.8b07721
    [21] CHEN W, YAN R-Q, ZHU J-Q, HUANG G-B, CHEN Z. Highly efficient visible-light-driven photocatalytic hydrogen evolution by all-solid-state Z-scheme CdS/QDs/ZnIn2S4 architectures with MoS2 quantum dots as solid-state electron mediator[J]. Appl Surf Sci,2020,504:144406. doi: 10.1016/j.apsusc.2019.144406
    [22] GAO F, HUANG X, ZHANG L, ZHAO Y, FENG W, LIU P. Crafty design of chemical bonding to construct MoO2/CdS nanorod photocatalysts for boosting hydrogen evolution[J]. Inter J Hydrogen Energy,2019,44(44):24228−24236. doi: 10.1016/j.ijhydene.2019.07.165
    [23] LIU Y, WANG L, LV H, WU X, XING X, SONG S. Constructing robust MoO2 /Au/Mn0.5Cd0.5S multiple heterojunctions for improved photocatalytic hydrogen evolution: An insight into the synergetic effect of MoO2 and Au cocatalysts[J]. Appl Surf Sci,2021,541:148582. doi: 10.1016/j.apsusc.2020.148582
    [24] WEI L, CHEN Y, LIN Y, WU H, YUAN R, LI Z. MoS2 as non-noble-metal co-catalyst for photocatalytic hydrogen evolution over hexagonal ZnIn2S4 under visible light irradiations[J]. Appl Catal B: Environ,2014,144:521−527. doi: 10.1016/j.apcatb.2013.07.064
    [25] FENG W, LEI Y, WU X, YUAN J, CHEN J, XU D, ZHANG X, ZHANG S, LIU P, ZHANG L, WENG B. Tuning the interfacial electronic structure via Au clusters for boosting photocatalytic H2 evolution[J]. J Mater Chem A,2021,9:1759−1769. doi: 10.1039/D0TA09217G
    [26] WU S, CHEN M, WANG W, ZHOU J, TANG X, ZHOU D, LIU C. Molybdenum carbide nanoparticles assembling in diverse heteroatoms doped carbon matrix as efficient hydrogen evolution electrocatalysts in acidic and alkaline medium[J]. Carbon,2021,171:385−394. doi: 10.1016/j.carbon.2020.09.037
    [27] CAO W, JIANG C, CHEN C, ZHOU H, WANG Y. A novel Z-scheme CdS/Bi4O5Br2 heterostructure with mechanism analysis: Enhanced photocatalytic performance[J]. J Alloy Compd,2021,861:158554. doi: 10.1016/j.jallcom.2020.158554
    [28] YAN W, XU Y, HAO S, HE Z, WANG L, WEI Q, XU J, TANG H. Promoting charge separation in hollow-structured C/MoS2@ZnIn2S4/Co3O4 photocatalysts via double heterojunctions for enhanced photocatalytic hydrogen evolution[J]. Inorg Chem,2022,61(11):4725−4734. doi: 10.1021/acs.inorgchem.2c00045
    [29] SHARMA L, KHUSHWAHA H S, MATHUR A, HALDER A. Role of molybdenum in Ni-MoO2 catalysts supported on reduced graphene oxide for temperature dependent hydrogen evolution reaction[J]. J Solid State Chem,2018,265:208−217. doi: 10.1016/j.jssc.2018.06.005
    [30] BI L, XU D, ZHANG L, LIN Y, WANG D, XIE T. Metal Ni-loaded g-C3N4 for enhanced photocatalytic H2 evolution activity: the change in surface band bending[J]. Phys Chem Chem Phys,2015,17(44):29899−29905. doi: 10.1039/C5CP05158D
  • 加载中
图(9)
计量
  • 文章访问数:  539
  • HTML全文浏览量:  227
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-14
  • 修回日期:  2022-03-22
  • 录用日期:  2022-03-25
  • 网络出版日期:  2022-04-06
  • 刊出日期:  2022-08-26

目录

    /

    返回文章
    返回