留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

立方体咪唑骨架衍生镍钴氢氧化物的微波制备及其电化学性能

王淼 冯宇 张燕 武蒙蒙 赵佳辉 米杰

王淼, 冯宇, 张燕, 武蒙蒙, 赵佳辉, 米杰. 立方体咪唑骨架衍生镍钴氢氧化物的微波制备及其电化学性能[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022026
引用本文: 王淼, 冯宇, 张燕, 武蒙蒙, 赵佳辉, 米杰. 立方体咪唑骨架衍生镍钴氢氧化物的微波制备及其电化学性能[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022026
WANG Miao, FENG Yu, ZHANG Yan, WU Meng-meng, ZHAO Jia-hui, MI Jie. Microwave Synthesis of ZIF-67 Derived Nickel-cobalt Hydroxide and Its Electrochemical Performance[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022026
Citation: WANG Miao, FENG Yu, ZHANG Yan, WU Meng-meng, ZHAO Jia-hui, MI Jie. Microwave Synthesis of ZIF-67 Derived Nickel-cobalt Hydroxide and Its Electrochemical Performance[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022026

立方体咪唑骨架衍生镍钴氢氧化物的微波制备及其电化学性能

doi: 10.19906/j.cnki.JFCT.2022026
基金项目: 山西省重大科技专项(MC2015-04)资助
详细信息
    通讯作者:

    FENG Yu, Tel: 15135163044, E-mail: sxyfeng@sina.com

    MI Jie, Tel: 13803496821, E-mail: mijie111@163.com

  • 中图分类号: TH3

Microwave Synthesis of ZIF-67 Derived Nickel-cobalt Hydroxide and Its Electrochemical Performance

Funds: The project was supported by the Major projects of Shanxi province (MC2015-04).
  • 摘要: 采用微波辅助加热法,以类沸石二甲基咪唑钴(ZIF-67)为模板和钴源,快速制备了三维中空结构的镍钴氢氧化物(Ni-Co LDH)。通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、X-射线光电子能谱仪(XPS)、透射电子显微镜(TEM)和比表面积及孔径分析仪(BET)探究了微波反应时间对材料形貌、结构的影响;通过循环伏安法(CV)、恒电流充放电(GCD)曲线和电化学阻抗谱(EIS)分析了材料的电化学性能。结果显示,Ni-Co LDH-15 min电极材料的电化学性能最优:在0.5 A /g时,比电容高达2371.0 F/g;电流密度扩大20倍,材料具有较好的倍率性能(78.5%)。以镍钴氢氧化物为正极,活性炭为负极组装成非对称式超级电容器,在功率密度为448.05 W/kg时,能量密度高达19.71 Wh/kg,且循环5000圈后电容保持率高达88.7%,表明镍钴氢氧化物是一种具有优异电化学性能和实际应用潜力的超级电容器电极材料。
  • 图  1  ZIF-67样品(a)和不同微波加热时间制得的镍钴氢氧化物(b)的XRD谱图

    Figure  1  XRD pattern of (a) ZIF-67, (b) Ni-Co LDH prepared by different microwave heating time

    图  2  (a)ZIF-67,(b)Ni-Co LDH-5 min,(c)Ni-Co LDH-10 min,(d)Ni-Co LDH-15 min,(e)Ni-Co LDH-15 min,(f)Ni-Co LDH-20 min,(g)Ni-Co LDH-20 min,(h)Ni-Co LDH-30 min和(i)Ni-Co LDH-35 min的 SEM照片

    Figure  2  SEM images of (a) ZIF-67, (b) Ni-Co LDH-5 min, (c) Ni-Co LDH-10 min, (d) Ni-Co LDH-15 min, (e) Ni-Co LDH-15 min, (f) Ni-Co LDH-20 min, (g) Ni-Co LDH-20 min, (h) Ni-Co LDH-30 min and (i) Ni-Co LDH-35 min

    图  3  (a)镍钴氢氧化物的氮气吸附-脱附等温曲线和(b)孔径分布

    Figure  3  (a) Nitrogen adsorption/desorption isotherms plots and (b) pore size distribution curves of Ni-Co LDH samples

    图  4  镍钴氢氧化物的XPS谱图(a)Ni 2p高分辨谱图,(b)Co 2p高分辨谱图

    Figure  4  High-resolution XPS spectrum of (a) Ni 2p, (b) Co 2p for Ni-Co LDH

    图  5  镍钴氢氧化物的(a)、(b)TEM图像和(c)EDX mapping照片

    Figure  5  (a)、(b) TEM images and (c) EDX mapping of Ni-Co LDH

    图  6  所有镍钴氢氧化物样品的(a)CV曲线(10 mV/s),(b)GCD曲线(0.5 A/g),(c)不同电流密度下的比电容关系,(d)EIS谱图,Ni-Co LDH-15 min的(e)CV曲线和(f)GCD曲线

    Figure  6  CV curves (10 mV/s), (b) GCD curves (0.5 A/g), (c) specific capacity versus at different current densities, (d) EIS spectrums of all Ni-Co LDH samples, (e) CV curves and (f) GCD curves of Ni-Co LDH-15 min

    图  7  (a)活性炭和镍钴氢氧化物电极在10 mV/s下的CV曲线,(b)Ni-Co LDH//AC器件在不同扫速下的CV曲线,(c)Ni-Co LDH//AC器件在不同电流密度下的GCD曲线,(d)Ni-Co LDH//AC器件的循环稳定性,(e)Ni-Co LDH//AC器件循环5000圈前后的XRD谱图和SEM照片,(f)Ni-Co LDH//AC器件的拉贡图

    Figure  7  (a) CV curves of AC and Ni-Co LDH electrode at 10 mV/s, (b) CV curves of Ni-Co LDH//AC at different scan rates, (c) GCD curves of Ni-Co LDH//AC at different current density, (d) cycling stability of Ni-Co LDH//AC, (e) before and after 5000 cycles of XRD patterns and SEM image, (f) Ragone plot of Ni-Co LDH//AC

    表  1  所有镍钴氢氧化物样品的BET比表面积和孔结构表

    Table  1  BET surface area and pore structure of all the Ni-Co LDH samples

    SampleSBET/ (m2·g−1)Dave/nmvt/ (cm3·g−1)
    Ni-Co LDH-5 min31310.140.79
    Ni-Co LDH-10 min2539.280.59
    Ni-Co LDH-15 min3268.870.72
    Ni-Co LDH-20 min27310.060.69
    Ni-Co LDH-25 min30510.900.83
    Ni-Co LDH-30 min31811.940.95
    Ni-Co LDH-35 min2738.790.60
    下载: 导出CSV
  • [1] LUO L, ZHOU Y L, YAN W, WU X, WANG S R, ZHAO W G. Two-step synthesis of B and N co-doped porous carbon composites by microwave-assisted hydrothermal and pyrolysis process for supercapacitor application[J]. Electrochim Acta,2020,360:137010. doi: 10.1016/j.electacta.2020.137010
    [2] MA J M, XIA J L, LIANG Z, DU Y P, YAN C H. Layered double hydroxide hollowcages with adjustable layer spacing for high performance hybrid supercapacitor[J]. Small,2021,2104423.
    [3] MEMON J, SUN J H, MENG D L, QUYANG W Z, MEMON M A, HUANG Y, YAN S K, GENG J X. Synthesis of graphene/Ni-Al layered double hydroxide nanowires and their application as an electrode material for supercapacitors[J]. J Mater Chem,2014,2:50605067.
    [4] WAN H Z, LI L, XU Y, TAN Q Y, LIU X, ZHANG J, WANG H B, WANG H. Three-dimensional cotton-like nickel nanowire@Ni-Co hydroxide nanosheet arrays as binder-free electrode for high-performance asymmetric supercapacitor[J]. Nanotechnology,2018,29:194003. doi: 10.1088/1361-6528/aab129
    [5] LI J, WEI M, CHU W, WANG N. High-stable α-phase NiCo double hydroxide microspheres via microwave synthesis for supercapacitor electrode materials[J]. Chem Eng J,2017,316:277−287. doi: 10.1016/j.cej.2017.01.057
    [6] DONG T, ZHANG X, LI M, WANG P, YANG P. Hierarchical flower-like Ni-Co layered double hydroxide nanostructures: synthesis and super performance[J]. Inorg Chem Front,2018,5:3033−3041. doi: 10.1039/C8QI00931G
    [7] WANG Q H, GAO F, XU B Y, CAI F X, ZHAN F P, GAO F, WANG Q X. ZIF-67 derived amorphous CoNi2S4 nanocages with nanosheet arrays on the shell for a high-performance asymmetric supercapacitor[J]. Chem Eng J,2017,327:387−396. doi: 10.1016/j.cej.2017.06.124
    [8] ZHONG G H, LIU D X, ZHANG J Y. The application of ZIF-67 and its derivatives: adsorption, separation, electrochemistry and catalysts[J]. J Mater Chem A,2018,6:1887−1899. doi: 10.1039/C7TA08268A
    [9] LIU Y X, WANG Y Z, SHI C J, CHEN Y J, LI D, HE Z F, WANG C, GUO L, MA J M. Co-ZIF derived porous NiCo-LDH nanosheets/N doped carbon foam for high-performance supercapacitor[J]. Carbon,2020,165:129−138. doi: 10.1016/j.carbon.2020.04.084
    [10] YAN T, LI R Y, LI Z J. Nickel-cobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets with a 3D nanonetwork structure as supercapacitive materials[J]. Mater Res Bull,2014,51:97−104. doi: 10.1016/j.materresbull.2013.11.044
    [11] TANG J, SALUNKHE R R, LIU J, TORAD N L, IMURA M, FURUKAWA S, YAMAUCHI Y. Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon [J], J Am Chem Soc, 2015, 137: 1572–1580.
    [12] QIN Q Q, OU D W, YE ChangjingY, CHEN L X, LAN B B, YAN J, WU Y C. Systematic study on hybrid supercapacitor of Ni-Co layered double hydroxide//activated carbons [J], Electrochim Acta, 2019, 305: 403–415.
    [13] ZHANG X D, YUE L C, ZHANG S G, FENG Y, AN L L, WANG M, MI J. Nickel-doped cobalt molybdate nanorods with excellent cycle stability for aqueous asymmetric supercapacitor[J]. Int J Hydrogen Energy,2020,45:8853−8865. doi: 10.1016/j.ijhydene.2020.01.127
    [14] WANG M, AN L L, WU M M, ZHANG S G, FENG Y, ZHANG X D, MI J. Self-template synthesis of nickel cobalt sulfide hollow nanotubes for high-performance battery-type supercapacitors[J]. J Electrochem Soc,2021,168:060510. doi: 10.1149/1945-7111/ac0458
    [15] WANG X H, HUANG F F, RONG F, HE P, QUE R H, JIANG S P. Unique MOF-derived hierarchical MnO2 nanotubes@NiCo-LDH/CoS2 nanocage materials as high performance supercapacitors[J]. J Mater Chem A,2019,7:12018−12028. doi: 10.1039/C9TA01951K
    [16] GUAN X H, HUANG M H, YANG L, WANG G S, GUAN X. Facial design and synthesis of CoSx/Ni-Co LDH nanocages with rhombic dodecahedral structure for high-performance asymmetric supercapacitors[J]. Chem Eng J,2019,372:151−162. doi: 10.1016/j.cej.2019.04.145
    [17] YUE L C, ZHANG S G, ZHAO H Q, WANG M, MI J, FENG Y, WANG D F. Microwave-assisted one-pot synthesis of Fe2O3/CNTs composite as supercapacitor electrode materials[J]. J Alloy Compd,2018,765:1263−1266. doi: 10.1016/j.jallcom.2018.06.283
    [18] ZHAO Y H, HE X Y, CHEN R R, LIU Q, LIU J Y, YU J, LI J Q, ZHANG H S, DONG H X, ZHANG M L, WANG J. A flexible all-solid-state asymmetric supercapacitors based on hierarchical carbon cloth@CoMoO4@NiCo layered double hydroxide core-shell heterostructures[J]. Chem Eng J,2018,352:29−38. doi: 10.1016/j.cej.2018.06.181
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  14
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-17
  • 录用日期:  2022-03-28
  • 修回日期:  2022-03-21
  • 网络出版日期:  2022-04-27

目录

    /

    返回文章
    返回