留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

合成气一步法直接制低碳烯烃双功能催化剂研究新进展

皂辉杰 姚金刚 刘静 陈冠益 易维明 熊加林

皂辉杰, 姚金刚, 刘静, 陈冠益, 易维明, 熊加林. 合成气一步法直接制低碳烯烃双功能催化剂研究新进展[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022052
引用本文: 皂辉杰, 姚金刚, 刘静, 陈冠益, 易维明, 熊加林. 合成气一步法直接制低碳烯烃双功能催化剂研究新进展[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022052
ZAO Hui-jie, YAO Jin-gang, LIU Jing, CHEN Guan-yi, YI Wei-ming, XIONG Jia-lin. New research progress on bifunctional catalysts for one-step direct production of low carbon olefins from syngas[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022052
Citation: ZAO Hui-jie, YAO Jin-gang, LIU Jing, CHEN Guan-yi, YI Wei-ming, XIONG Jia-lin. New research progress on bifunctional catalysts for one-step direct production of low carbon olefins from syngas[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022052

合成气一步法直接制低碳烯烃双功能催化剂研究新进展

doi: 10.19906/j.cnki.JFCT.2022052
基金项目: 国家自然科学基金(52006129,51906129),山东省自然科学基金(ZR2020QE205),广东省新能源和可再生能源研究开发与应用重点实验室(E039kf0701,E239kf0401)资助
详细信息
    通讯作者:

    Tel:15695431959,E-mail:yaojingang@sdut.edu.cn

    ljing815@tju.edu.cn

  • 中图分类号: O643.3

New research progress on bifunctional catalysts for one-step direct production of low carbon olefins from syngas

Funds: The project was supported by the National Natural Science Foundation of China (52006129 and 51906129), Shandong Provincial Natural Science Foundation (ZR2020QE205) and Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development (E039kf0701 and E239kf0401).
  • 摘要: 以乙烯、丙烯和丁烯为主的低碳烯烃是重要的化工基础原料,由合成气一步法直接催化制取低碳烯烃路线因其流程短、能耗低等优势,已成为非石油路线生产低碳烯烃的主要发展方向,其主要包括经费托合成反应制备低碳烯烃的路线(FTO)和基于金属氧化物/分子筛(OX-ZEO)双功能催化剂体系的路线(SDTO)。本文综述了近年来在合成气制备低碳烯烃方面的研究进展,重点阐述了OX-ZEO双功能催化剂的设计、不同活性位点的耦合制备方法、催化剂表界面调控对其催化性能的影响,详细解析了H2/CO比、温度、压力、接触时间等反应条件对SDTO反应的调控机制,概括了现代表征技术在揭示OX-ZEO催化反应机理中的应用,同时总结了OX-ZEO的催化反应机理。最后对OX-ZEO双功能催化路径目前存在的挑战和未来的发展进行了展望。
  • 图  1  合成气转化制备低碳烯烃路径示意图

    Figure  1  Various routes for the production of lower olefins via syngas

    图  2  预测产物分布的ASF模型[8]

    Figure  2  ASF model for predicting the distribution of the product

    图  3  碳氢化合物在含有不同沸石的复合催化剂上的分布[6]

    Figure  3  Hydrocarbon distribution over composite catalysts containing different zeolites

    图  4  OX-ZEO双功能催化剂的催化性能[6]

    Figure  4  Performance of the bifunctional OX-ZEO catalyst in the conversion of syngas to olefins

    图  5  金属粒径对催化效果的影响[47]

    Figure  5  Effect of metal particle size on the catalytic effect

    图  6  煅烧过的SAPO-34的扫描电子显微图[63]

    Figure  6  SEM pictures of the calcined zeotype

    图  7  金属氧化物Zn−ZrO2和分子筛SSZ-13的接近程度对双功能催化剂的催化行为的影响[29]

    Figure  7  Effects of the proximity of bifunctional OX-ZEO catalysts on syngas conversion

    图  8  双功能催化剂表面合成气制备低碳烯烃的反应路径[29]

    Figure  8  Reaction pathways for the preparation of low carbon olefins from syngas on bifunctional catalyst surfaces

    表  1  基于OX/ZEO体系的合成气直接制取低碳烯烃

    Table  1  Summary of direct production of low carbon olefins from syngas over OX/ZEO catalysts

    CatalystCO conv./%Selectivity of hydrocarbonsh[c%]References
    CH4${\rm{C}}_2^= - {\rm{C}}_4^= $C5 + CH3OHDME
    ZnCr2O42.4a1.641.14726[28]
    ZnO-ZrO22.0b8.1114.966[13]
    ZnAl2O43.1c8.00.80.21477[28]
    ZnCr2O4/SAPO-3411d8.0643.0[31]
    ZnO-ZrO2/SAPO-347.0e4.0692.0[13]
    ZnAl2O4/SAPO-3424f3.5802.4[28]
    ZnZrO4/SSZ-1329g2.0773.0[29]
    ZnCrOx/SSZ-1320i6.0727.5[32]
    ZnAlOx/SAPO-1821j3.07110[33]
    [a,c,d]Reaction conditions:H2/CO=2,400 ℃,3.0 MPa,GHSV =4800 mL·h−1·gcat−1[b,e]Reaction conditions:H2/CO=2,400 ℃,1.0 MPa,GHSV =4800 mL·h−1·gcat−1[i]Reaction conditions:H2/CO=2,400 ℃,1.0 MPa,GHSV =6000 mL·h−1·gcat−1[j]Reaction conditions:H2/CO=2,400 ℃,3.0 MPa,GHSV =3000 mL·h−1·gcat−1[h]Product obtained based on C mole calculations, excluding CO2.
    下载: 导出CSV

    表  2  OX/ZEO催化反应条件对合成气催化转化的影响

    Table  2  The influence of different reaction conditions on syngas conversion over OX/ZEO catalysts

    Metal OxideZeoliteTopologyCO conv
    [%]
    Light olefin
    selectivity [%]h
    Selectivity of hydrocarbonsh[c%]CO2 selv
    [%]
    References
    CH4C240C511
    ZnCrOxMASPOCHA17 a806131150[11]
    ZnZrOxSAPO-34TON9.5 b636292.2[14]
    ZnZrOxSSZ-13CHA23c75< 415< 4[15]
    ZnCrOxAlPO-18AEI16.6 d43< 2< 2547[20]
    ZnAl2O3SAPO-34CHA6.12 e5410.4231.4814.547[21]
    ZnCrOxH-SSZ-13CHA20.9 f70.8616.96.348[16]
    [a]Reaction conditions:ZnCrOx/Zeolite =1/1.4 (Wt.%),H2/CO=1.5,400 ℃,2.5 MPa,GHSV =4800 mL·h−1·gcat−1[b]Reaction conditions:ZnZrOx/Zeolite =1/1.0 (Wt.%),Zn /ZrO2=1/4.0 (Wt.%),H2/CO=1.0,400 ℃,1.5 Mpa;[c]Reaction conditions:ZnZrOx/ Zeolite =1/1.0 (Wt.%),Zn /ZrO2=1/16 (Wt.%),H2/CO=2.0,400 ℃,1.0 MPa;[d]Reaction conditions:ZnCrOx/ Zeolite =1/1.0 (Wt.%),H2/CO=1.0,390 ℃,4.0 MPa,GHSV =3600 mL·h−1·gcat−1[e]Reaction conditions:ZnCrOx/ Zeolite =1/2.0 (Wt.%),Zn/Al2O3=1/2 (Wt.%),H2/CO=2.0,350 ℃,2.0 MPa,GHSV =4800 mL·h−1·gcat−1[f]Reaction conditions:ZnCrOx/ Zeolite = 1/2.0 (Wt.%),H2/CO=3.0,380 ℃,4.0 MPa,GHSV =6000 mL·h−1·gcat−1[h]Product obtained based on C mole calculations, excluding CO2
    下载: 导出CSV
  • [1] 徐恒泳, 葛庆杰, 李文钊. 合成气中枢[J]. 石油化工,2011,40(7):689−699.

    XU Heng-yong, GE Qing-Jie, LI Wen-Zhao. SyngasHub[J]. Petrochemical Technology,2011,40(7):689−699.
    [2] 刘中民, 齐越. 甲醇制取低碳烯烃 (DMTO) 技术的研究开发及工业性试验[J]. 中国科学院院刊,2006,21(5):406−408. doi: 10.3969/j.issn.1000-3045.2006.05.015

    LIU Zhong-min, QI Yue. Research and development and industrial trials of methanol to mild olefin (DMTO) technology[J]. Bulletin of Chinese Academy of Sciences,2006,21(5):406−408. doi: 10.3969/j.issn.1000-3045.2006.05.015
    [3] 姚如伟, 位健, 孙剑, 葛庆杰. Na-Fe3O4/ZSM-5催化剂上CO2加氢反应汽油烃产物的组成调控[J]. 工业催化,2018,26(5):63−69. doi: 10.3969/j.issn.1008-1143.2018.05.010

    YAO Ru-wei, WEI Jian, SUN Jian, GE Qing-Jie. Composition adjusting and controlling of hydrocarbons in gasoline from CO2 hydrogenation over Na-Fe3O4/ZSM-5 catalyst[J]. Industrial Catalysis,2018,26(5):63−69. doi: 10.3969/j.issn.1008-1143.2018.05.010
    [4] 涂军令, 定明月, 李宇萍, 王铁军, 马隆龙, 李新军. 生物质到生物燃料-费托合成催化剂的研究进展[J]. 新能源进展,2014,2(2):94−103. doi: 10.3969/j.issn.2095-560X.2014.02.003

    TU Jun-ling, DING Ming-Yue, LI Yu-Ping, WANG Tie-Jun, MA Tie-Long, LI Xin-Jun. Development of catalysts for biofuels production from biomass via Fischer-Tropsch synthesis[J]. Advances In New And Renew Able Energy,2014,2(2):94−103. doi: 10.3969/j.issn.2095-560X.2014.02.003
    [5] 葛庆杰. 第六章 合成气化学[J]. 工业催化, 2016, 24(3): 82-104.

    GE Qing-jie, Chapter 6 Syngas chemistry[J]. Industrial Catalysis, 2016, 24(3): 82-104.
    [6] JIAO F, LI J, PAN X, XIAO J, LI H, MA H, WEI M, PAN Y, ZHOU Z, LI M. Selective conversion of syngas to light olefins[J]. Science,2016,351(6277):1065−1068. doi: 10.1126/science.aaf1835
    [7] 包信和. 纳米限域及能源分子的催化转化[J]. 科学通报,2018,63(14):1265−1274. doi: 10.1360/N972018-00441

    BAO Xin-he. Nano confinement and catalytic conversion of energy molecules[J]. Chinese Science Bulletin,2018,63(14):1265−1274. doi: 10.1360/N972018-00441
    [8] 高鹏, 崔勖, 钟良枢, 孙予罕. CO/CO2加氢高选择性合成化学品和液体燃料[J]. 化工进展,2019,38(1):183−195.

    GAO Peng, CUI Xu, ZHONG Liang-hu, SUN Yu-Han. CO/CO2 hydrogenation to chemicals and liquid fuels with high selectivity[J]. Chem Ind Eng Prog,2019,38(1):183−195.
    [9] 王涛, 张雪冰, 张琪, 孟祥堃, 门卓武. 合成气高温费托合成制低碳烯烃铁催化剂研究进展[J]. 能源科技,2020,18(1):66−71.

    WANG Tao, ZHANG Xue-Bing, ZHANG Qi, MENG Xiang-Kun, MEN Zhuo-Wu. Study process of lron catalyst for syngas high temperature Fischer-Tropsch synthesis to low-carbon olefins[J]. Energy Science And Technology,2020,18(1):66−71.
    [10] 程金燮, 胡志彪, 王科, 邹鑫, 徐晓峰, 李倩, 黄宏, 吴熙宇. 我国合成气一步法制低碳烯烃催化剂研究新进展[J]. 化工进展,2016,35(8):2439−2445. doi: 10.16085/j.issn.1000-6613.2016.08.21

    CHENG Jin-xie, HU Zhi-Biao, WANG Ke, ZHOU Xin, XU Xiao-Feng, LI Qian, HUANG Hong, WU Xi-Yu. New advances in the catalysts for one-step light olefins production from syngas in China[J]. Chem Ind Eng Prog,2016,35(8):2439−2445. doi: 10.16085/j.issn.1000-6613.2016.08.21
    [11] 赵国龙, 刘存, 邢学想, 王金山, 刘嵩, 张雄福. 合成气一步法制低碳烯烃研究新进展[J]. 现代化工,2019,39(2):55−60. doi: 10.16606/j.cnki.issn0253-4320.2019.02.013

    Zhao Guo-long, Liu Cun, XING Xue-Xiang, WANG Jin-Shan, LIU Song, ZHANG Xiong-Fu. Latest progress in one-step conversion from syngas to light olefins[J]. Modern Chemical Industry,2019,39(2):55−60. doi: 10.16606/j.cnki.issn0253-4320.2019.02.013
    [12] 马光远, 徐艳飞, 王捷, 王琼, 郑荣贵, 定明月. 合成气直接法制取低碳烯烃铁基催化体系研究进展[J]. 化工进展,2018,37(3):992−1000. doi: 10.16085/j.issn.1000-6613.2017-0981

    MA Guang-yuan, XU Yan-Fei, WANG Jie, WANG Qiong, ZHENG Rong-Gui, DING Ming-Yue. Research progress of iron-based catalyst for converting syngas directly to light olefins[J]. Chem Ind Eng Prog,2018,37(3):992−1000. doi: 10.16085/j.issn.1000-6613.2017-0981
    [13] CHENG K, GU B, LIU X, KANG J, ZHANG Q, WANG Y. Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angew Chem Int Ed,2016,128(15):4803−4806. doi: 10.1002/ange.201601208
    [14] 周伟, 成康, 张庆红, 王野. 合成气转化中的接力催化[J]. 科学通报,2021,66(10):1157−1169. doi: 10.1360/TB-2020-1309

    ZHOU Wei, CHENG Kang, ZHANG Qing-Hong, WANG Ye. Relay catalysis in the conversion of syngas[J]. Chinese Science Bulletin,2021,66(10):1157−1169. doi: 10.1360/TB-2020-1309
    [15] CHEN F, JIN W, CHENG D G, ZHAN X, LIN Y S. Fabrication of AC@ZSM-5 core-shell particles and their performance in Fischer-Tropsch synthesis[J]. J Chem Technol Biotechnol,2013,88(12):2133−2140. doi: 10.1002/jctb.4072
    [16] LI J, PAN X, BAO X. Direct conversion of syngas into hydrocarbons over a core-shell Cr-Zn@SiO2@SAPO-34 catalyst[J]. Chinese J Catal,2015,36(7):1131−1135. doi: 10.1016/S1872-2067(14)60297-7
    [17] RAVEENDRA G, LI C, CHENG Y, MENG F, LI Z. Direct transformation of syngas to lower olefins synthesis over hybrid Zn-Al2O3/SAPO-34 catalysts[J]. New J Chem,2018,42(6):4419−4431. doi: 10.1039/C7NJ04734G
    [18] ZHU Y, PAN X, JIAO F, LI J, YANG J, DING M, HAN Y, LIU Z, BAO X. Role of manganese oxide in syngas conversion to light olefins[J]. ACS Catal.,2017,7(4):2800−2804. doi: 10.1021/acscatal.7b00221
    [19] LI N, JIAO F, PAN X, DING Y, FENG J, BAO X. Size effects of ZnO nanoparticles in bifunctional catalysts for selective syngas conversion[J]. ACS Catal.,2018,9(2):960−966.
    [20] ZHANG P, MENG F, LI X, YANG L, MA P, LI Z. Excellent selectivity for direct conversion of syngas to light olefins over a Mn-Ga oxide and SAPO-34 bifunctional catalyst[J]. Catal Sci Technol,2019,9(20):5577−5581. doi: 10.1039/C9CY01348B
    [21] YANG G, MENG F, ZHANG P, YANG L, LI Z. Effects of preparation method and precipitant on Mn-Ga oxide in combination with SAPO-34 for syngas conversion into light olefins[J]. New J. Chem.,2021,45(18):7967−7976. doi: 10.1039/D1NJ00443C
    [22] MENG F, LI X, ZHANG P, YANG L, YANG G, MA P, LI Z. Highly active ternary oxide ZrCeZnOx combined with SAPO-34 zeolite for direct conversion of syngas into light olefins[J]. Catal. Today,2021,368:118−125. doi: 10.1016/j.cattod.2020.03.023
    [23] MENG F, LI X, ZHANG P, YANG L, LIU S, LI Z. A facile approach for fabricating highly active ZrCeZnOx in combination with SAPO-34 for the conversion of syngas into light olefins[J]. Appl Surf Sci,2021,542:148713. doi: 10.1016/j.apsusc.2020.148713
    [24] RAVEENDRA G, LI C, LIU B, CHENG Y, MENG F, LI Z. Synthesis of lower olefins from syngas over Zn/Al2O3-SAPO-34 hybrid catalysts: role of doped Zr and influence of the Zn/Al2O3 ratio[J]. Catal Sci Technol,2018,8(14):3527−3538. doi: 10.1039/C8CY00574E
    [25] SANTOS V P, POLLEFEYT G, YANCEY D F, SANDIKCI A C, VANCHURA B, NIESKENS D L, DE KOK-KLEIBERG M, KIRILIN A, CHOJECKI A, MALEK A. Direct conversion of syngas to light olefins (C2−C3) over a tandem catalyst CrZn-SAPO-34: Tailoring activity and stability by varying the Cr/Zn ratio and calcination temperature[J]. J Catal,2020,381:108−120. doi: 10.1016/j.jcat.2019.08.027
    [26] CHENG K, ZHOU W, KANG J, HE S, SHI S, ZHANG Q, PAN Y, WEN W, WANG Y. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem,2017,3(2):334−347. doi: 10.1016/j.chempr.2017.05.007
    [27] NI Y, LIU Y, CHEN Z, YANG M, LIU H, HE Y, FU Y, ZHU W, LIU Z. Realizing and recognizing syngas-to-olefins reaction via a dual-bed catalyst[J]. ACS Catal,2018,9(2):1026−1032.
    [28] LIU X, WANG M, YIN H, HU J, CHENG K, KANG J, ZHANG Q, WANG Y. Tandem catalysis for hydrogenation of CO and CO2 to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34[J]. ACS Catal,2020,10(15):8303−8314. doi: 10.1021/acscatal.0c01579
    [29] LIU X, ZHOU W, YANG Y, CHENG K, KANG J, ZHANG L, ZHANG G, MIN X, ZHANG Q, WANG Y. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates[J]. Chem Sci,2018,9(20):4708−4718. doi: 10.1039/C8SC01597J
    [30] SU J, ZHOU H, LIU S, WANG C, JIAO W, WANG Y, LIU C, YE Y, ZHANG L, ZHAO Y. Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrOx/AlPO-18 bifunctional catalysts[J]. Nat Commun,2019,10(1):1−8. doi: 10.1038/s41467-018-07882-8
    [31] TAN L, WANG F, ZHANG P, SUZUKI Y, WU Y, CHEN J, YANG G, TSUBAKI N. Design of a core-shell catalyst: an effective strategy for suppressing side reactions in syngas for direct selective conversion to light olefins[J]. Chem Sci,2020,11(16):4097−4105. doi: 10.1039/C9SC05544D
    [32] HUANG Y, MA H, XU Z, QIAN W, ZHANG H, YING W. Direct conversion of syngas to light olefins over a zncrox + h-ssz-13 bifunctional catalyst[J]. ACS omega,2021,6(16):10953−10962. doi: 10.1021/acsomega.1c00751
    [33] WANG M, KANG J, XIONG X, ZHANG F, CHENG K, ZHANG Q, WANG Y. Effect of zeolite topology on the hydrocarbon distribution over bifunctional ZnAlO/SAPO catalysts in syngas conversion[J]. Catal Today,2021,371:85−92. doi: 10.1016/j.cattod.2020.07.076
    [34] XU Z, MA H, HUANG Y, QIAN W, ZHANG H, YING W. Synthesis of submicron SSZ-13 with tunable acidity by the seed-assisted method and its performance and coking behavior in the MTO reaction[J]. ACS omega,2020,5(38):24574−24583. doi: 10.1021/acsomega.0c03075
    [35] XU Z, LI J, HUANG Y, MA H, QIAN W, ZHANG H, YING W. Size control of SSZ-13 crystals with APAM and its influence on the coking behaviour during MTO reaction[J]. Catal Sci Technol,2019,9(11):2888−2897. doi: 10.1039/C9CY00412B
    [36] ZHOU H, LIU S, SU J, LIU C, ZHANG L, JIAO W, WANG Y. Light olefin synthesis from syngas over sulfide-zeolite composite catalyst[J]. Ind Eng Chem Res,2018,57(20):6815−6820. doi: 10.1021/acs.iecr.8b00940
    [37] TORRES GALVIS H M, BITTER J H, DAVIDIAN T, RUITENBEEK M, DUGULAN A I, DE JONG K P. Iron particle size effects for direct production of lower olefins from synthesis gas[J]. J Am Chem Soc,2012,134(39):16207−16215. doi: 10.1021/ja304958u
    [38] DEN BREEJEN J P, RADSTAKE P B, BEZEMER G L, BITTER J H, FRØSETH V, HOLMEN A, DE JONG K D. On the origin of the cobalt particle size effects in Fischer-Tropsch catalysis[J]. J Am Chem Soc,2009,131(20):7197−7203. doi: 10.1021/ja901006x
    [39] GAO D, ZHOU H, WANG J, MIAO S, YANG F, WANG G, WANG J, BAO X. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles[J]. J Am Chem Soc,2015,137(13):4288−4291. doi: 10.1021/jacs.5b00046
    [40] BEZEMER G L, BITTER J H, KUIPERS H P, OOSTERBEEK H, HOLEWIJN J E, XU X, KAPTEIJN F, VAN DILLEN A J, DE JONG K P. Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts[J]. J Am Chem Soc,2006,128(12):3956−3964. doi: 10.1021/ja058282w
    [41] TOMAS V H, MARTEN S, KRIJN P D J, JOHANNES H B. Effect of initial nickel particle size on stability of nickel catalysts for aqueous phase reforming[J]. J Energy Chem,2016,25(2):289−296. doi: 10.1016/j.jechem.2016.01.006
    [42] MELAET G, LINDEMAN A E, SOMORJAI G A. Cobalt particle size effects in the Fischer-Tropsch synthesis and in the hydrogenation of CO2 studied with nanoparticle model catalysts on silica[J]. Top Catal,2014,57(6):500−507.
    [43] CARBALLO J M G, YANG J, HOLMEN A, GARCÍA-RODRÍGUEZ S, ROJAS S, OJEDA M, FIERRO J L G. Catalytic effects of ruthenium particle size on the Fischer-Tropsch Synthesis[J]. J Catal,2011,284(1):102−108. doi: 10.1016/j.jcat.2011.09.008
    [44] WANG Z, SKILES S, YANG F, YAN Z, GOODMAN D W. Particle size effects in Fischer-Tropsch synthesis by cobalt[J]. Catal Today,2012,181(1):75−81. doi: 10.1016/j.cattod.2011.06.021
    [45] TYO E C, YIN C, DI VECE M, QIAN Q, KWON G, LEE S, LEE B, DEBARTOLO J E, SEIFERT S, WINANS R E. Oxidative dehydrogenation of cyclohexane on cobalt oxide (Co3O4) nanoparticles: the effect of particle size on activity and selectivity[J]. ACS Catal,2012,2(11):2409−2423. doi: 10.1021/cs300479a
    [46] KULD S, THORHAUGE M, FALSIG H, ELKJÆR C F, HELVEG S, CHORKENDORFF I, SEHESTED J. Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis[J], Science. 2016, 352(6288): 969-974.
    [47] YANG J, PAN X, JIAO F, LI J, BAO X. Direct conversion of syngas to aromatics[J]. Chem Commun,2017,53(81):11146−11149. doi: 10.1039/C7CC04768A
    [48] ZHOU C, SHI J, ZHOU W, CHENG K, ZHANG Q, KANG J, WANG Y. Highly active ZnO-ZrO2 aerogels integrated with H-ZSM-5 for aromatics synthesis from carbon dioxide[J]. ACS Catal,2019,10(1):302−310.
    [49] LIU J, HE Y, YAN L, MA C, ZHANG C, XIANG H, WEN X, LI Y. Nano-ZrO2 as hydrogenation phase in bi-functional catalyst for syngas aromatization[J]. Fuel,2020,263:116803. doi: 10.1016/j.fuel.2019.116803
    [50] JAMPAIAH D, DAMMA D, CHALKIDIS A, SINGH M, SABRI Y M, MAYES E L, BANSAL V, BHARGAVA S K. MOF-derived noble-metal-free Cu/CeO2 with high porosity for the efficient water-gas shift reaction at low temperatures[J]. Catal Sci Technol,2019,9(16):4226−4231. doi: 10.1039/C9CY01114E
    [51] SANTOS V P, WEZENDONK T A, JAÉN J J D, DUGULAN A I, NASALEVICH M A, ISLAM H, CHOJECKI A, SARTIPI S, SUN X, HAKEEM A A. Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts[J]. Nat Commun,2015,6(1):1−8.
    [52] LIU J, HE Y, YAN L, LI K, ZHANG C, XIANG H, WEN X, LI Y. Nano-sized ZrO2 derived from metal-organic frameworks and their catalytic performance for aromatic synthesis from syngas[J]. Catal Sci Technol,2019,9(11):2982−2992. doi: 10.1039/C9CY00453J
    [53] WANG Y, ZHAN W, CHEN Z, CHEN J, LI X, LI Y. Advanced 3D hollow-out ZnZrO@C combined with hierarchical zeolite for highly active and selective CO hydrogenation to aromatics[J]. ACS Catal,2020,10(13):7177−7187. doi: 10.1021/acscatal.0c01418
    [54] ZHANG Z, HUANG Y, MA H, QIAN W, ZHANG H, YING W. Syngas-to-olefins over MOF-derived ZnZrOx and SAPO-34 bifunctional catalysts[J]. Catal Commun,2021,152:106292. doi: 10.1016/j.catcom.2021.106292
    [55] LI F, AO M, PHAM G H, SUNARSO J, CHEN Y, LIU J, WANG K, LIU S. Cu/ZnO catalysts derived from bimetallic metal-organic framework for dimethyl ether synthesis from syngas with enhanced selectivity and stability[J]. Small,2020,16(14):1906276. doi: 10.1002/smll.201906276
    [56] JAMPAIAH D, DAMMA D, CHALKIDIS A, SINGH M, SABRI Y M, MAYES E L H, BANSAL V, BHARGAVA S K. MOF-derived noble-metal-free Cu/CeO2 with high porosity for the efficient water-gas shift reaction at low temperatures[J]. Catal Sci Technol,2019,9(16):4226−4231. doi: 10.1039/C9CY01114E
    [57] LI G, JIAO F, PAN X, LI N, MIAO D, LI L, BAO X. Role of SAPO-18 acidity in direct syngas conversion to light olefins[J]. ACS Catal,2020,10(21):12370−12375. doi: 10.1021/acscatal.0c03257
    [58] CHEN J, THOMAS J M, WRIGHT P A, TOWNSEND R P. Silicoaluminophosphate number eighteen (SAPO-18): a new microporous solid acid catalyst[J]. Catal Lett,1994,28(2):241−248.
    [59] LI Z, MARTÍNEZ-TRIGUERO J, CONCEPCIÓN P, YU J, CORMA A. Methanol to olefins: activity and stability of nanosized SAPO-34 molecular sieves and control of selectivity by silicon distribution[J]. PCCP,2013,15(35):14670−14680. doi: 10.1039/c3cp52247d
    [60] ALMUTAIRI S M T. The role of Lewis and Brønsted acidity for alkane activation over zeolites[M]. Netherlands: Technische Universiteit Eindhoven 2013.
    [61] Müller S. Understanding elementary steps in methanol-to-olefins chemistry[D]. München: Technische Universität München, 2016.
    [62] Yao J, Liu S, Chen G, Yi W, Liu J. Enhanced bioethanol-to-ethylene performance over nanosized sheet-like M-SAPO-34 (M= Sr and K) catalysts[J]. Microporous Mesoporous Mater.,2022,338:111980. doi: 10.1016/j.micromeso.2022.111980
    [63] HUANG Y, MA H, XU Z, QIAN W, ZHANG H, YING W. Role of nanosized sheet-like SAPO-34 in bifunctional catalyst for syngas-to-olefins reaction[J]. Fuel,2020,273:117771. doi: 10.1016/j.fuel.2020.117771
    [64] THOMMES M, KANEKO K, NEIMARK A V, OLIVIER J P, RODRIGUEZ-REINOSO F, ROUQUEROL J, SING K S. Physisorption of gases with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure Appl Chem,2015,87(9-10):1051−1069. doi: 10.1515/pac-2014-1117
    [65] YANG G, WEI Y, XU S, CHEN J, LI J, LIU Z, YU J, XU R. Nanosize-enhanced lifetime of SAPO-34 catalysts in methanol-to-olefin reactions[J]. J Phys Chem C,2013,117(16):8214−8222. doi: 10.1021/jp312857p
    [66] LIU X, WANG M, ZHOU C, ZHOU W, CHENG K, KANG J, ZHANG Q, DENG W, WANG Y. Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34[J]. Chem Commun,2018,54(2):140−143. doi: 10.1039/C7CC08642C
    [67] MIAO D, DING Y, YU T, LI J, PAN X, BAO X. Selective synthesis of benzene, toluene, and xylenes from syngas[J]. ACS Catal,2020,10(13):7389−7397. doi: 10.1021/acscatal.9b05200
    [68] ZHANG J, ZHANG M, CHEN S, WANG X, ZHOU Z, WU Y, ZHANG T, YANG G, HAN Y, TAN Y. Hydrogenation of CO2 into aromatics over a ZnCrOx-zeolite composite catalyst[J]. Chem Commun,2019,55(7):973−976. doi: 10.1039/C8CC09019J
    [69] LU J, FU B, KUNG M C, XIAO G, ELAM J W, KUNG H H, STAIR P C. Coking-and sintering-resistant palladium catalysts achieved through atomic layer deposition[J]. Science,2012,335(6073):1205−1208. doi: 10.1126/science.1212906
    [70] Ye M, Li H, Zhao Y, Zhang T, Liu Z. MTO processes development: the key of mesoscale studies[M]. Netherlands: Elsevier, 2015: 279-335.
    [71] LIU L, CORMA A. Structural transformations of solid electrocatalysts and photocatalysts[J]. Nat Rev Chem,2021,5(4):256−276. doi: 10.1038/s41570-021-00255-8
    [72] WEBER J L, KRANS N A, HOFMANN J P, HENSEN E, ZECEVIC J, DE JONGH P E, DE JONG K P. Effect of proximity and support material on deactivation of bifunctional catalysts for the conversion of synthesis gas to olefins and aromatics[J]. Catal Today,2020,342:161−166. doi: 10.1016/j.cattod.2019.02.002
    [73] DING Y, JIAO F, PAN X, JI Y, LI M, SI R, PAN Y, HOU G, BAO X. Effects of proximity-dependent metal migration on bifunctional composites catalyzed syngas to olefins[J]. ACS Catal,2021,11(15):9729−9737. doi: 10.1021/acscatal.1c01649
    [74] NI Y, LIU Y, CHEN Z, YANG M, LIU H, HE Y, FU Y, ZHU W, LIU Z. Realizing and recognizing syngas-to-olefins reaction via a dual-bed catalyst[J]. ACS Catal,2018,9(2):1026−1032.
    [75] RAVEENDRA G, LI C, LIU B, CHENG Y, MENG F, LI Z. Synthesis of lower olefins from syngas over Zn/Al2O3-SAPO-34 hybrid catalysts: role of doped Zr and influence of the Zn/Al2O3 ratio[J]. Catal Sci Technol,2018,8(14):3527−3538. doi: 10.1039/C8CY00574E
    [76] JIAO F, PAN X, GONG K, CHEN Y, LI G, BAO X. Shape-selective zeolites promote ethylene formation from syngas via a ketene intermediate[J]. Angew Chem Int Ed,2018,57(17):4692−4696. doi: 10.1002/anie.201801397
    [77] SU J, WANG D, WANG Y, ZHOU H, LIU C, LIU S, WANG C, YANG W, XIE Z, HE M. Direct conversion of syngas into light olefins over zirconium-doped indium(III) Oxide and SAPO-34 bifunctional catalysts: design of oxide component and construction of reaction network[J]. ChemCatChem,2018,10(7):1536−1541. doi: 10.1002/cctc.201702054
    [78] ZHANG P, MENG F, YANG L, YANG G, LIANG X, LI Z. Syngas to olefins over a CrMnGa/SAPO-34 bifunctional catalyst: effect of Cr and CrMn ratio[J]. Ind Eng Chem Res,2021,60(36):13214−13222. doi: 10.1021/acs.iecr.1c02150
    [79] LI F, AO M, PHAM G H, SUNARSO J, CHEN Y, LIU J, WANG K, LIU S. Cu/ZnO catalysts derived from bimetallic metal-organic framework for dimethyl ether synthesis from syngas with enhanced selectivity and stability[J]. Small,2020,16(14):1906276. doi: 10.1002/smll.201906276
    [80] CHENG K, VAN DER WAL L I, YOSHIDA H, OENEMA J, HARMEL J, ZHANG Z, SUNLEY G, ZEČEVIĆ J, DE JONG K P. Impact of the spatial organization of bifunctional metal-zeolite catalysts on the hydroisomerization of light alkanes[J]. Angew Chem Int Ed,2020,132(9):3620−3628. doi: 10.1002/ange.201915080
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  1
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-29
  • 录用日期:  2022-06-14
  • 修回日期:  2022-06-04
  • 网络出版日期:  2022-07-11

目录

    /

    返回文章
    返回