留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

灰分中碱和碱土金属对生物质快速热解生物油组分的影响

丁紫霞 蔡博 岑珂慧 陈登宇 马中青

丁紫霞, 蔡博, 岑珂慧, 陈登宇, 马中青. 灰分中碱和碱土金属对生物质快速热解生物油组分的影响[J]. 燃料化学学报(中英文), 2024, 52(7): 967-975. doi: 10.19906/j.cnki.JFCT.2023076
引用本文: 丁紫霞, 蔡博, 岑珂慧, 陈登宇, 马中青. 灰分中碱和碱土金属对生物质快速热解生物油组分的影响[J]. 燃料化学学报(中英文), 2024, 52(7): 967-975. doi: 10.19906/j.cnki.JFCT.2023076
DING Zixia, CAI Bo, CEN Kehui, CHEN Dengyu, MA Zhongqing. The effect of alkali and alkaline earth metals in biomass ash on the bio-oil components derived from biomass fast pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2024, 52(7): 967-975. doi: 10.19906/j.cnki.JFCT.2023076
Citation: DING Zixia, CAI Bo, CEN Kehui, CHEN Dengyu, MA Zhongqing. The effect of alkali and alkaline earth metals in biomass ash on the bio-oil components derived from biomass fast pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2024, 52(7): 967-975. doi: 10.19906/j.cnki.JFCT.2023076

灰分中碱和碱土金属对生物质快速热解生物油组分的影响

doi: 10.19906/j.cnki.JFCT.2023076
基金项目: 国家自然科学基金(52376214, 52076112),浙江省自然科学基金(LY21E060001)和浙江省 “领雁”研发攻关计划(2022C03092)资助
详细信息
    通讯作者:

    E-mail: chendy@njfu.edu.cn

    mazq@zafu.edu.cn

  • 中图分类号: TK6

The effect of alkali and alkaline earth metals in biomass ash on the bio-oil components derived from biomass fast pyrolysis

Funds: The project was supported by the National Natural Science Foundation of China (52376214, 52076112), the Natural Science Foundation of Zhejiang Province (LY21E060001), the Key R & D Program of Zhejiang Province (2022C03092).
  • 摘要: 生物质灰分中的碱和碱土金属(AAEMs)对快速热解生物油的产率和组分分布具有显著影响。本研究选取玉米秸秆为原料,研究梯级脱灰预处理(蒸馏水、醋酸铵和盐酸)对AAEMs的选择性脱除及其生物油组分的影响,研究了碱和碱土金属类别(K、Ca、Na和Mg)、盐质量分数(0.5%、2.5%、5%)和不同钾盐的酸根(${\rm{SO}}_{4}^{{2-}} $、${\rm{NO}}_{3}^{-} $、${\rm{CO}}_{3}^{{2-}} $、${\rm{HCO}}_{3}^{-} $、AC和${\rm{PO}}_{4}^{{{3-}}}$)对生物油组分的影响。结果表明,在梯级脱灰预处理过程中,随着脱灰溶液酸性程度加深,AAEMs的脱除率逐渐上升,根据AAEMs在梯级脱灰过程中的选择性脱除规律,可将其在生物质中的赋存形态分为水溶性(K)、离子交换性(Ca和Mg)和酸溶性(Na)等形态。经过碱和碱土金属盐浸渍后,AAEMs将起到催化剂的作用,促进热解中间产物左旋葡聚糖的二次降解,导致其相对含量显著降低,形成更多的呋喃和酮类等轻质含氧化合物,导致2, 3-二氢苯并呋喃、酮类和长链烷烃等组分的含量显著增加。不同钾盐酸根离子对脱水糖的二次裂解反应及木质素芳基醚键和酚羟基的裂解反应具有较大的影响,根据酸根的酸性强弱,对脱水糖裂解反应的影响大小顺序为${\rm{HCO}}_{3}^{-} $>${\rm{CO}}_{3}^{{{2-}}}$>AC>${\rm{PO}}_{4}^{{{3-}}}$>Cl>${\rm{NO}}_{3}^{-} $>${\rm{SO}}_{4}^{{{2-}}}$,而对木质素芳基醚键和酚羟基的裂解反应影响大小顺序为${\rm{CO}}_{3}^{{{2-}}}$>Cl>${\rm{HCO}}_{3}^{-} $>${\rm{PO}}_{4}^{{{3-}}}$≈AC>${\rm{SO}}_{4}^{{{2-}}}$≈${\rm{NO}}_{3}^{-} $。
  • 图  1  生物质梯级脱灰预处理工艺流程

    Figure  1  Stepwise demineralization process of biomass

    图  2  梯级脱灰预处理对热解生物油组分的影响

    Figure  2  Effect of stepwise demineralization pretreatment on the components of bio-oil

    图  3  氯化盐种类和质量分数对脱灰后生物质热解生物油组分的影响

    Figure  3  Effect of types of chloride salt and concentration on the components of bio-oil derived from pyrolysis of acid-washed biomass

    图  4  钾金属盐的酸根对热解生物油组分的影响

    Figure  4  Effect of acid roots of K salt on the components of bio-oil

    图  5  碱和碱土金属对生物质热解的影响机制

    Figure  5  Effect of AAEMs on the pyrolysis mechanism of biomass

    表  1  原料及梯级脱灰预处理样品的元素分析和工业分析

    Table  1  Ultimate and proximate analyses of raw and pretreated biomass

    SampleUltimate analysis wdaf/% Proximate analysis wdb/%
    CHOSNAVFC
    CS-raw45.426.1847.810.090.60 3.3977.5819.03
    CS-H2O46.346.3146.980.020.352.3882.3015.32
    CS-NH4AC46.366.2847.040.030.291.7385.2113.06
    CS-HCl46.336.2447.150.070.211.7086.5411.76
    下载: 导出CSV

    表  2  原料及梯级脱灰预处理样品的碱和碱土金属质量分数

    Table  2  Contents of AAEMs in raw and stepwise demineralization pretreated biomass

    SampleContents of AAEMs/(μg·g−1) Removal rates of AAEMs after each washing step/%
    KNaCaMgKNaCaMg
    CS-raw7375.47417.06663.03789.85
    CS-H2O1486.73376.00397.81393.8979.849.8540.0050.13
    CS-NH4AC49.77340.6685.4238.5219.488.4747.1244.99
    CS-HCl14.48349.932.6011.540.480.0012.493.42
    下载: 导出CSV
  • [1] 黄明, 朱亮, 马中青, 等. 金属改性分子筛催化热解木质素制取轻质芳烃[J]. 燃烧化学学报,2021,49(3):292−302.

    HUANG Ming, ZHU Liang, MA Zhongqing, et al. Production of light aromatics from the fast pyrolysis of lignin catalyzed by metal-modified H-ZSM-5 zeolites[J]. J Fuel Chem Technol,2021,49(3):292−302.
    [2] 朱亮, 黄明, 丁紫霞, 等. 烘焙脱氧毛竹与高密度聚乙烯共催化热解制备轻质芳烃[J]. 燃料化学学报,2022,50(8):993−1003.

    ZHU Liang, HUANG Ming, DING Zixia, et al. Production of light bio-aromatics from co-catalytic fast pyrolysis of torrefied bamboo and high-density polyethylene[J]. J Fuel Chem Technol,2022,50(8):993−1003.
    [3] WANG S R, DAI G X, YANG H P, et al. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review[J]. Prog Energy Combust,2017,62:33−86. doi: 10.1016/j.pecs.2017.05.004
    [4] CAI W, CHIKAYA K B, MA Z Q, et al. Synergetic deoxygenation and demineralization of biomass by wet torrefaction pretreatment and its influence on the compound distribution of bio-oil during catalytic pyrolysis[J]. J Anal Appl Pyrolysis,2023,174:106134. doi: 10.1016/j.jaap.2023.106134
    [5] CHEN D Y, CEN K H, CHEN F, et al. Are the typical organic components in biomass pyrolyzed bio-oil available for leaching of alkali and alkaline earth metallic species (AAEMs) from biomass?[J]. Fuel,2020,260:116347. doi: 10.1016/j.fuel.2019.116347
    [6] 刘金淼, 马欣欣, 燕黄, 等. 碱/碱土金属浸渍对酸洗生物质热解影响研究[J]. 北京化工大学学报(自然科学版),2015,42(5):24−31.

    LIU Jingsen, MA Xinxin, YAN Huang, et al. Effect of alkaline/alkaline earth metal impregnation on pyrolysis of acid-washing biomass[J]. J Beijing Univ Chem Technol (Nat Sci),2015,42(5):24−31.
    [7] HU R, WAN S Q, MAO F, et al. Changes in pyrolysis characteristics of agricultural residues before and after water washing[J]. J Fuel Chem Technol,2021,49(9):1239−1249. doi: 10.1016/S1872-5813(21)60073-7
    [8] ASTON J E, THOMPSON D N, WESTOVER T L. Performance assessment of dilute-acid leaching to improve corn stover quality for thermochemical conversion[J]. Fuel,2016,186:311−319. doi: 10.1016/j.fuel.2016.08.056
    [9] ZHANG Y J, LV P, WANG J F, et al. Product characteristics of rice straw pyrolysis at different temperature: Role of inherent alkali and alkaline earth metals with different occurrence forms[J]. J Energy Inst,2022,101:201−208. doi: 10.1016/j.joei.2022.01.016
    [10] GUREVICH MESSINA L I, BONELLI P R, et al. Effect of acid pretreatment and process temperature on characteristics and yields of pyrolysis products of peanut shells[J]. Renewable Energy,2017,114:697−707. doi: 10.1016/j.renene.2017.07.065
    [11] CHEN H D, CHEN X L, QIAO Z, et al. Release and transformation characteristics of K and Cl during straw torrefaction and mild pyrolysis[J]. Fuel,2016,167:31−39. doi: 10.1016/j.fuel.2015.11.059
    [12] LIN X N, KONG L S, CAI H Z, et al. Effects of alkali and alkaline earth metals on the co-pyrolysis of cellulose and high density polyethylene using TGA and Py-GC/MS[J]. Fuel Process Technol, 2019: 71−78.
    [13] LENG E, COSTA M, GONG X, et al. Effects of KCl and CaCl2 on the evolution of anhydro sugars in reaction intermediates during cellulose fast pyrolysis[J]. Fuel,2019,251:307−315. doi: 10.1016/j.fuel.2019.04.006
    [14] ZHANG H Y, MA Y, SHAO S S, et al. The effects of potassium on distributions of bio-oils obtained from fast pyrolysis of agricultural and forest biomass in a fluidized bed[J]. Appl Energy,2017,208:867−877. doi: 10.1016/j.apenergy.2017.09.062
    [15] ZHAO S L, LIU M, ZHAO L, et al. Effects of organic and inorganic metal salts on thermogravimetric pyrolysis of biomass components[J]. Korean J Chem Eng,2017,34(12):3077−3084. doi: 10.1007/s11814-017-0209-8
    [16] 蒋丽群, 岳元茂, 徐禄江, 等. 预处理促进木质纤维素快速热解生成左旋葡聚糖[J]. 化工学报,2021,72(4):1825−1832.

    JIANG Liqun, YUE Yuanmao, XU Lujiang, et al. Pretreatments promote levoglucosan production from lignocellulose via fast pyrolysis[J]. CIESC J,2021,72(4):1825−1832.
    [17] WANG C Y, XIA S P, YANG X W, et al. Oriented valorization of cellulose and xylan into anhydrosugars by using low-temperature pyrolysis[J]. Fuel,2021,291:120156. doi: 10.1016/j.fuel.2021.120156
    [18] ZHENG A Q, WANG Q, LIU S J, et al. Selective sequential fractionation of biomass for quantitatively elucidating the compositional factors affecting biomass fast pyrolysis[J]. J Anal Appl Pyrolysis,2021,156:105106. doi: 10.1016/j.jaap.2021.105106
    [19] HORNER H T, WAGNER B L. Calcium Oxalate Formation in Higher Plants[M]. Calcium Oxalate In Biological Systems. Florida: CRC Press, 2020: 53−72.
    [20] 钱乐, 蒋丽群, 岳元茂, 等. 催化热解生物质生成左旋葡聚糖酮的研究进展[J]. 化工学报,2020,71(12):5376−5387.

    QIAN Yue, JIANG Liqun, YUE Yuanmao, et al. Research progress of catalytic pyrolysis of biomass to yield levoglucosenone[J]. CIESC J,2020,71(12):5376−5387.
    [21] YANG H, LI S, LIU B, et al. Hemicellulose pyrolysis mechanism based on functional group evolutions by two-dimensional perturbation correlation infrared spectroscopy[J]. Fuel,2020,267:117302. doi: 10.1016/j.fuel.2020.117302
    [22] LOU R, WU S B, LV G J. Fast pyrolysis of enzymatic/mild acidolysis lignin from moso bamboo[J]. BioResources,2010,5(2):827−837. doi: 10.15376/biores.5.2.827-837
    [23] WANG S Q, LI Z H, BAI X Y, et al. Influence of inherent hierarchical porous char with alkali and alkaline earth metallic species on lignin pyrolysis[J]. Bioresour Technol,2018,268:323−331. doi: 10.1016/j.biortech.2018.07.117
    [24] 王锐, 高明洋, 曹景沛. 碱/碱土金属催化松木屑快速热解机制[J]. 应用化学,2022,39(2):289−297.

    WANG Yue, GAO Mingyang, CAO Jingpei. Mechanism of rapid pyrolysis of pine chips catalyzed by alkali/alkaline earth metals[J]. Chin J Appl Chem,2022,39(2):289−297.
    [25] 孔令伟, 张冰磊, 郭晨, 等. 金属盐添加剂对生物质热解特性影响研究进展[J]. 广东化工,2022,49(23):119−20+56.

    KONG Lingwei, ZHANG Binglei, GUO Chen, et al. Research progress on the effects of metal additives on biomass pyrolysis characteristics[J]. Guangdong Chem Ind,2022,49(23):119−20+56.
    [26] CHEN H P, TANG Z Y, LIU B, et al. The new insight about mechanism of the influence of K2CO3 on cellulose pyrolysis[J]. Fuel,2021,295:120617. doi: 10.1016/j.fuel.2021.120617
    [27] WANG L C, SHEN Y F. Pyrolysis characteristics of cellulosic biomass in the presence of alkali and alkaline-earth-metal (AAEM) oxalates[J]. Cellulose,2021,28(6):3473−3483. doi: 10.1007/s10570-021-03756-3
    [28] SUN T L, ZHANG L, YANG Y T, et al. Fast pyrolysis of cellulose and the effect of a catalyst on product distribution[J]. Int J Environ Res Public Health,2022,19(24):16837. doi: 10.3390/ijerph192416837
    [29] MARATHE P S, OUDENHOVEN S R G, HEERSPINK P W, et al. Fast pyrolysis of cellulose in vacuum: The effect of potassium salts on the primary reactions[J]. Chem Eng J,2017,329:187−197. doi: 10.1016/j.cej.2017.05.134
    [30] MAYES H B, NOLTE M W, BECKHAM G T, et al. The alpha-Bet(a) of salty glucose pyrolysis: computational investigations reveal carbohydrate pyrolysis catalytic action by sodium ions[J]. ACS Catalysis,2014,5(1):192−202.
  • 七期-RJ-02附件材料.docx
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  218
  • HTML全文浏览量:  68
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-11
  • 修回日期:  2023-10-04
  • 录用日期:  2023-10-19
  • 网络出版日期:  2023-10-31
  • 刊出日期:  2024-07-01

目录

    /

    返回文章
    返回