生物质连续式水热预处理及固相产物热解特性研究

Hydrothermal flowthrough pretreatment of biomass and pyrolysis characteristics of residual solid

  • 摘要: 生物质复杂的多组分体系和致密交联的化学结构是制约其高值化利用的关键,实现木质纤维组分预分离对生物质分级转化具有重要意义。实验采用连续式水热法预处理稻壳,考察了水热温度和流量对稻壳分解速率以及固相产物化学组成与热解特性的影响。结果表明,稻壳的水热分解符合表面化学反应过程控制的未反应收缩核模型,预处理在180 ℃下能脱除稻壳95%的碱及碱土金属、92%的半纤维素和59%的木质素,极大保留了纤维素组分,这使得稻壳热解产物中以左旋葡聚糖为主的脱水糖的相对含量从9.9%提高至48.2%。

     

    Abstract: The sophisticated multi-components and densed cross-link chemical structures of lignocellulosic biomass are important bottlenecks restricting its value-added utilization. The pre-fractionation of lignocellulose components is of great significance for the fractional conversion of biomass. The present study subjected rice husk (RH) to hydrothermal treatment in a flowthrough mode and investigated the effects of hydrothermal temperature and water flowrate on the decomposition rate of RH, chemical components of residual solids and their pyrolysis characteristics. It is shown that the decomposition of RH under hydrothermal conditions conformed well to the unreacted shrinking core model with phase boundary reactions rate-controlling. The pretreatment at 180 ℃ removed 95% alkali and alkaline-earth metallic species, 92% hemicellulose and 59% lignin from RH and selectively retained most of the cellulose components. As a result of the pretreatment, the relative content of anhydrosugar (mainly levoglucosan) from pyrolysis of RH at a curie-point temperature of 445 ℃ was increased from 9.9% up to 48.2%.

     

/

返回文章
返回