留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe、La掺杂和氧缺陷对CeO2表面吸附As2O3的密度泛函理论研究

卢鲲鹏 张凯华 张锴

卢鲲鹏, 张凯华, 张锴. Fe、La掺杂和氧缺陷对CeO2表面吸附As2O3的密度泛函理论研究[J]. 燃料化学学报(中英文), 2024, 52(8): 1149-1161. doi: 10.19906/j.cnki.JFCT.2024005
引用本文: 卢鲲鹏, 张凯华, 张锴. Fe、La掺杂和氧缺陷对CeO2表面吸附As2O3的密度泛函理论研究[J]. 燃料化学学报(中英文), 2024, 52(8): 1149-1161. doi: 10.19906/j.cnki.JFCT.2024005
LU Kunpeng, ZHANG Kaihua, ZHANG Kai. Density functional theory study of adsorption of As2O3 on CeO2 surface by Fe, La doping and oxygen defects[J]. Journal of Fuel Chemistry and Technology, 2024, 52(8): 1149-1161. doi: 10.19906/j.cnki.JFCT.2024005
Citation: LU Kunpeng, ZHANG Kaihua, ZHANG Kai. Density functional theory study of adsorption of As2O3 on CeO2 surface by Fe, La doping and oxygen defects[J]. Journal of Fuel Chemistry and Technology, 2024, 52(8): 1149-1161. doi: 10.19906/j.cnki.JFCT.2024005

Fe、La掺杂和氧缺陷对CeO2表面吸附As2O3的密度泛函理论研究

doi: 10.19906/j.cnki.JFCT.2024005
基金项目: 国家自然科学基金委与山西煤基低碳联合基金重点项目(U1910215)和国家重点研发计划(2020YFB0606201)资助
详细信息
    通讯作者:

    E-mail: khzhang@ncepu.edu.cn

  • 中图分类号: TK22

Density functional theory study of adsorption of As2O3 on CeO2 surface by Fe, La doping and oxygen defects

Funds: The project was supported by the National Natural Science Foundation of China (U1910215) and the National Key R&D Program of China (2020YFB0606201).
  • 摘要: 采用密度泛函理论研究了As2O3(g)在Fe、La掺杂CeO2(110)表面及氧缺陷LaCeO(110)表面的吸附行为,探索了LaCeO表面砷吸附能力显著高于FeCeO表面的主要原因。结果表明,As2O3(g)的吸附效果与吸附位点数量、吸附能、键长和电荷转移密切相关。纯CeO2表面的吸附主要为化学吸附,吸附能绝对值大于−4.22 eV,电荷转移量为(−0.19)− (−0.31) e,As2O3得到电荷带负电,起表面受主作用,因此吸附量较小。FeCeO(110)表面新增Fe顶位和Bridge-2桥位两个吸附位,其中,Fe顶位为化学吸附,Fe掺杂改变了FeCeO表面电子分布和晶格结构,但并未改变As2O3与FeCeO之间的电荷转移方向,因此,As2O3仍呈负离子形式吸附。LaCeO(110)表面新增了三个吸附位:La顶位、Bridge-3桥位和Hollow-2空位,La掺杂改变了As2O3与LaCeO之间的电荷转移方向,使得As2O3失电子呈正离子吸附,起表面施主作用,因此,吸附能力增强。无O2环境下,单一O缺陷LaCeO(110)表面吸附能力低于完整LaCeO表面;有O2环境下,O缺陷有利于As2O3的吸附。
  • FIG. 3303.  FIG. 3303.

    FIG. 3303.  FIG. 3303.

    图  1  As2O3和CeO2结构模型示意图

    Figure  1  Structural model of As2O3 and CeO2 ((a), (b) and (c) represent As2O3 front view, CeO2 side view, and CeO2 top view respectively)

    图  2  As2O3在CeO2表面的吸附

    Figure  2  Adsorption of As2O3 on CeO2 surface

    图  3  1B构型分波态密度

    Figure  3  1B Configurational fractal density

    图  4  1B构型电荷转移情况

    Figure  4  1B Configuration charge transfer

    图  5  Fe原子的两种掺杂形式

    Figure  5  Two doping forms of Fe atoms ((a) and (b) are the top view and side view of gap doping, and (c) and (d) are the top view and side view of alternative doping)

    图  6  2B、2C、2D构型结构图

    Figure  6  2B, 2C, 2D structure diagram

    图  7  2B构型差分电荷密度分布

    Figure  7  2B configuration differential charge density distribution

    图  8  La原子的两种掺杂形式

    Figure  8  Two doping forms of La atoms

    图  9  3B、3F、3H构型结构图

    Figure  9  3B, 3F, 3H structure diagram

    图  10  3B构型分波态密度

    Figure  10  3B Configurational fractal density

    图  11  3B构型电荷转移情况

    Figure  11  3B Configuration charge transfer

    图  12  单原子氧缺陷La掺杂CeO2(110) 表面

    Figure  12  Single atomic oxygen defect La doped CeO2(110) surface

    图  13  4A、4B、4C构型结构图

    Figure  13  4A, 4B, 4C structure diagram

    图  14  4A*、4B*、4C*构型结构图

    Figure  14  4A*, 4B*, 4C* structure diagram

    图  15  4B*构型分波态密度

    Figure  15  4B* Configurational fractal density

    表  1  As2O3分子在CeO2(110)表面的吸附能、键长和电荷转移

    Table  1  Adsorption energy, bond length and charge transfer of As2O3 molecules on CeO2 (110) surface

    Adsorption structure(X-Y) Ead/eV RAs-O RCe-Oads ΔQ/e
    1A O2-O5 −5.89 1.90 2.33 −0.28
    1B As1-O5 −7.42 1.84 2.31 −0.22
    1C O2-Ce1 −6.82 1.87 2.26 −0.29
    1D As1-Ce1 −6.60 1.87 2.24 −0.28
    1E O2-Bridge-1 −5.57 1.92 2.35 −0.31
    1F As1-Bridge-1 −0.04 4.41 4.97 −0.04
    1G O2-Hollow1 −4.22 1.82 2.38 −0.19
    1H As1-Hollow1 −0.06 4.41 4.39 −0.06
    下载: 导出CSV

    表  2  As2O3分子在FeCeO(110)表面的吸附能、键长和电荷转移

    Table  2  Adsorption energy, bond length and charge transfer of As2O3 molecules on FeCeO (110) surface

    Adsorption structure(X-Y) Ead/eV RAs-O RCe-Oads ΔQ/e
    2A O2-O5 −6.55 1.85 4.31 −0.20
    2B As1-O5 −8.02 1.84 2.27 −0.14
    2C O2-Ce1 −8.56 1.82 2.06 −0.22
    2D As1-Ce1 −0.22 4.03 4.58 −0.05
    2E O2-Fe −2.54 1.82 2.45 −0.2
    2F As1-Fe −4.42 1.93 2.29 −0.32
    2G O2- Bridge-1 −8.29 1.82 2.27 −0.23
    2H As1- Bridge-1 1.51 4.08 4.78 −0.06
    2I O2-Bridge-2 0.26 2.98 4.42 −0.05
    2J As- Bridge-2 0.31 2.95 2.51 −0.07
    下载: 导出CSV

    表  3  As2O3分子在LaCeO(110)表面的吸附能、键长和电荷转移

    Table  3  Adsorption energy, bond length and charge transfer of As2O3 molecules on LaCeO (110) surface

    Adsorption structure (X-Y) Ead/eV RAs-O RCe-Oads ΔQ/e
    3A O2-O5 −7.74 1.91 2.36 0.36
    3B As1-O5 −10.83 1.78 2.42 0.46
    3C O2-Ce1 −11.09 1.78 2.51 0.45
    3D As1-Ce1 −10.13 1.91 4.76 0.35
    3E O2-La −0.81 2.66 6.12 −0.04
    3F As1-La −8.44 1.89 2.52 0.37
    3G O2- Bridge-1 −8.56 1.88 2.43 0.39
    3H As1- Bridge-1 −9.31 1.91 2.36 0.35
    3I O2- Bridge-3 −12.53 1.79 2.60 0.37
    3J As1- Bridge-3 −10.70 1.88 2.43 0.36
    3K O2-Hollow-1 −11.81 1.79 2.51 0.46
    3L As1-Hollow-1 −11.82 1.81 2.51 0.43
    3M O2-Hollow-2 −10.29 1.91 3.87 0.36
    3N As1-Hollow-2 −0.08 4.20 5.12 −0.04
    下载: 导出CSV

    表  4  As2O3分子在LaCeO(Ov)(110)表面的吸附能、键长和电荷转移

    Table  4  Adsorption energy, bond length and charge transfer of As2O3 molecules on LaCeO(Ov) (110) surface

    Adsorption structure Ead RAs-O RCe-Oads ΔQ/e
    4A As1−O4v −5.53 1.76 2.50 −0.12
    4B As1−O4(O7v) −5.59 1.86 2.36 −0.24
    4C O2−O4(O7v) −6.50 1.98 4.85 −0.30
    下载: 导出CSV

    表  5  As2O3分子在LaCeO(O2)(110)表面的吸附能、键长和电荷转移

    Table  5  Adsorption energy, bond length and charge transfer of As2O3 molecules on LaCeO(O2) (110) surface

    Adsorption structure Ead RAs-O/Å RCe-Oads ΔQ/e
    4A* As1- O4v(O2 −2.28 1.76 2.50 −0.25
    4B* As1-O4(O7v-O2) −10.95 1.80 2.47 0.52
    4C* O2-O4(O7v-O2) −11.50 1.78 2.91 0.44
    下载: 导出CSV
  • [1] 刘明亮, 卫浩, 盖玉龙, 等. 中国、美国、欧盟及世界一次能源消费现状与展望[J]. 煤化工,2022,50(2):1−5.

    LIU Mingliang, WEI Hao , GAI Yulong, et al. Current situation and outlook of primary energy consumption in China, US, EU and the world[J]. Coal Chem Ind,2022,50(2):1−5.
    [2] TIAN H Z, WANG Y, XUE Z G, et al. Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in china, 1980–2007[J]. Atmos Chem Phy,2010,10(23):11905−11919. doi: 10.5194/acp-10-11905-2010
    [3] TANG Q, LIU G, YAN Z, et al. Distribution and fate of environmentally sensitive elements (arsenic, mercury, stibium and selenium) in coal-fired power plants at huainan, anhui, china[J]. Fuel,2012,95:334−339. doi: 10.1016/j.fuel.2011.12.052
    [4] QUISPE D, PÉREZ-LÓPEZ R, SILVA L F O, et al. Changes in mobility of hazardous elements during coal combustion in santa catarina power plant (brazil)[J]. Fuel,2012,94:495−503. doi: 10.1016/j.fuel.2011.09.034
    [5] XUE Y, WANG Y. Effective industrial regeneration of arsenic poisoning waste selective catalytic reduction catalyst: contaminants removal and activity recovery[J]. Environ Sci Pollut Res,2018,25(34):34114−34122. doi: 10.1007/s11356-018-3369-0
    [6] CIMINO S, LISI L. Catalyst deactivation, poisoning and regeneration[J]. Catalysts,2019,9(8):668. doi: 10.3390/catal9080668
    [7] 王俊杰, 张亚平, 李娟, 等. 砷中毒商业V2O5-WO3/TiO2催化剂的再生方法[J]. 工程热物理学报,2018,39(2):450−456.

    WANG Junjie, ZHANG Yaping, LI Juan, et al. Regeneration method of arsenic poisoned commerical SCR catalyst[J]. J Eng Thermophys,2018,39(2):450−456.
    [8] HU P, WANG S, ZHUO Y. Research on As2O3 adsorption enhancement characteristics of Mn-modified γ-Al2O3[J]. Chem Eng J,2021,426:131660. doi: 10.1016/j.cej.2021.131660
    [9] 曹蕃, 苏胜, 向军, 等. Mn-Ce-Zr/γ-Al2O3催化剂低温选择性催化还原脱硝性能分析[J]. 中国电机工程学报,2015,35(9):2238.

    CAO Fan, SU Sheng, XIANG Jun, et al. Performances of Mn-Ce-Zr/γ-Al2O3 catalyst for low temperature selective catalytic reduction of NO[J]. Proc CSEE,2015,35(9):2238.
    [10] ZHANG Y, LIU J. Density functional theory study of arsenic adsorption on the Fe2O3(001) surface[J]. Energy Fuels,2019,33(2):1414−1421. doi: 10.1021/acs.energyfuels.8b04155
    [11] HU H Y, CHEN D K, LIU H, et al. Adsorption and reaction mechanism of arsenic vapors over γ-Al2O3 in the simulated flue gas containing acid gases[J]. Chemosphere,2017,180(1):186−191.
    [12] HWANG S, KIM Y, LEE J, et al. Promoting effect of CO on low-temperature NO x adsorption over Pd/CeO2 catalyst[J]. Catal Today,2022,384-386:88−96. doi: 10.1016/j.cattod.2021.05.022
    [13] ZHAO G, LI M, LI H, et al. La-doped micro-angular cube ZnSnO3 with nano-La2O3 decoration for enhanced ethylene glycol sensing performance at low temperature[J]. Sens Actuators, A,2023,362:114649. doi: 10.1016/j.sna.2023.114649
    [14] ZHANG K, HU L, WANG C, et al. Middle-low-temperature oxidation and adsorption of arsenic from flue gas by Fe–Ce-based composite catalyst[J]. Chemosphere,2022,288:132425. doi: 10.1016/j.chemosphere.2021.132425
    [15] 侯书阳, 张凯华, 王传风, 等. Fe-Ce-La复合氧化物在中低温烟气脱砷过程中的协同作用[J]. 中国电机工程学报,2023,43(2):640−651.

    HOU Shuyang, ZHANG Kaihua, WANG Chuanfeng, et al. Synergistic effect of Fe-Ce-La composite oxide in the process of arsenic removal from flue gas at middle-low-temperatures[J]. Proc CSEE,2023,43(2):640−651.
    [16] 唐楠楠, 张姝, 李强林. 密度泛函理论的基本计算方法研究进展[J]. 成都纺织高等专科学校学报,2015,32(2):39−43.

    TANG Nannan, ZHANG Shu , LI Qianghlin. Basic algorithms research progress of density functional theory[J]. J Chengdu Text Coll,2015,32(2):39−43.
    [17] 马生贵, 田博文, 周雨薇, 等. 氮掺杂Stone-Wales缺陷石墨烯吸附H2S的密度泛函理论研究[J]. 化工学报,2021,72(9):4496−4503. doi: 10.11949/0438-1157.20210215

    MA Shenggui, TIAN Bowen, ZHOU Yuwei, et al. DFT study of adsorption of H2S on N-doped Stone-Wales defected graphene[J]. J Chem Eng,2021,72(9):4496−4503. doi: 10.11949/0438-1157.20210215
    [18] 周文波, 牛胜利, 刘思彤, 等. γ-Fe2O3抗As2O3中毒能力的分子模拟[J]. 中国环境科学,2022,42(8):3600−3609. doi: 10.3969/j.issn.1000-6923.2022.08.014

    ZHOU Wenbo, NIU Shengli, LIU Sitong, et al. Molecular simulation study on the anti-As2O3 poisoning ability of γ-Fe2O3[J]. China Environ Sci,2022,42(8):3600−3609. doi: 10.3969/j.issn.1000-6923.2022.08.014
    [19] YU Y, ZHAO R, LI X, et al. Mechanism of CaO and Fe2O3 capture gaseous arsenic species in the flue gas: DFT combined thermodynamic study[J]. Fuel,2022,312:122838. doi: 10.1016/j.fuel.2021.122838
    [20] ZHANG Y, ZHAO B, WANG C, et al. Dual-functional effect encompassing adsorption and catalysis by mn-modified iron-based sorbents for arsenic removal: Experimental and DFT study[J]. J Hazard Mater,2023,459:132079. doi: 10.1016/j.jhazmat.2023.132079
    [21] ZHAO S, WANG Y, XIE X, et al. Arsenic removal from coal-fired flue gas by MnO2 coated magnetic flower-like Fe3O4 composites: Experimental and DFT study[J]. Chem Eng J,2023,478:147481. doi: 10.1016/j.cej.2023.147481
    [22] DELLEY B. Dmol3 DFT studies: from molecules and molecular environments to surfaces and solids[J]. Comp Mater Sci,2000,17(2):122−126.
    [23] PERDEW J P, BURKE K, WANG Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system[J]. Phys Rev B: Condens Matter,1996,54(23):16533−16539. doi: 10.1103/PhysRevB.54.16533
    [24] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett,1996,77(18):3865−3868. doi: 10.1103/PhysRevLett.77.3865
    [25] NOLAN M, GRIGOLEIT S, SAYLE D C, et al. Density functional theory studies of the structure and electronic structure of pure and defective low index surfaces of ceria[J]. Surf Sci,2005,576(1/3):217−229. doi: 10.1016/j.susc.2004.12.016
    [26] YANG Y, HU K, ZHANG J, et al. Adsorption properties of noble-metal (Ag, Rh, or Au)-doped CeO2(110) to CO: A DFT + U study[J]. Comput Mater Sci,2024,231:112543. doi: 10.1016/j.commatsci.2023.112543
    [27] HE P, WU J, JIANG X, et al. Effect of SO3 on elemental mercury adsorption on a carbonaceous surface[J]. Appl Surf Sci,2012,258(22):8853−8860. doi: 10.1016/j.apsusc.2012.05.104
    [28] YANG Y, LIU J, ZHANG B, et al. Density functional theory study on the heterogeneous reaction between Hg0 and Hcl over spinel-type MnFe2O4[J]. Chem Eng J,2017,308:897−903. doi: 10.1016/j.cej.2016.09.128
    [29] 李宗宝, 贾礼超, 王霞等. N、C掺杂比例对锐钛矿TiO2电子结构影响的第一性原理研究[J]. 黑龙江大学工程学报,2014,5(1):41−46.

    LI Zongbao, JIA Lichao, WANG Xia, et al. Density function theory on the electronic structure property of anatase TiO2 doped by N or C with different percents[J]. J Eng Heilongjiang Univ,2014,5(1):41−46.
    [30] LYU Z, NIU S, LU C, et al. A density functional theory study on the selective catalytic reduction of NO by NH3 reactivity of α-Fe2O3 (001) catalyst doped by Mn, Ti, Cr and Ni[J]. Fuel,2020,267:117147. doi: 10.1016/j.fuel.2020.117147
    [31] HUANG X, ZHANG K, PENG B, et al. Ceria-based materials for thermocatalytic and photocatalytic organic synthesis[J]. ACS Catal,2021,11(15):9618−9678. doi: 10.1021/acscatal.1c02443
    [32] YANG Z X, YU X H, LU Z S, et al. Oxygen vacancy pairs on CeO2(110): A DFT + U study[J]. Phys Lett A,2009(373):312786−2792.
    [33] REN D, GUI K. Study of the adsorption of NH3 and NO x on the nanoγ-Fe2O3 (001) surface with density functional theory[J]. Appl Surf Sci,2019,487:171−179. doi: 10.1016/j.apsusc.2019.04.250
    [34] LI L, SONG L, ZHANG X, et al. Effect of substitutional and interstitial boron-doped NiCO2S4 on the electronic structure and surface adsorption: high rate and long-term stability[J]. ACS Appl Energy Mater,2022,5(2):2505−2513. doi: 10.1021/acsaem.1c04033
    [35] HU P, WENG Q, LI D, et al. Effects of O2, SO2, H2O and CO2 on As2O3 adsorption by γ-Al2O3 based on DFT analysis[J]. J Hazard Mater,2021,403:123866. doi: 10.1016/j.jhazmat.2020.123866
    [36] XU H X, CHENG D J, CAO D P, et al. A universal principle for a rational design of single-atom electrocatalysts[J]. Nat Catal,2018,1:339−348. doi: 10.1038/s41929-018-0063-z
    [37] WU Y, ZHOU X, MI T, et al. Theoretical insight into the interaction mechanism between V2O5/TiO2 (001) surface and arsenic oxides in flue gas[J]. Appl Surf Sci,2021,535:147752. doi: 10.1016/j.apsusc.2020.147752
    [38] 张佳松, 王辉, 王宁等. CO在不同氧缺陷Cu1/CeO2(110)表面的吸附: DFT+U[J]. 燃料化学学报,2022,50(3):326−336. doi: 10.1016/S1872-5813(21)60149-4

    ZHANG Jiasong, WANG Hui, WANG ning, et al. Adsorption of CO on Cu1/CeO2(110) surface with different oxygen defects: DFT + U[J]. J Fuel Chem Technol,2022,50(3):326−336. doi: 10.1016/S1872-5813(21)60149-4
    [39] LIU Z, YU F, DONG D, et al. Transition-metal‐doped ceria carried on two-dimensional vermiculite for selective catalytic reduction of NO with CO: Experiments and density functional theory[J]. Appl Surf Sci,2021,566:150704. doi: 10.1016/j.apsusc.2021.150704
  • 加载中
图(16) / 表(5)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  80
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-08
  • 修回日期:  2024-02-05
  • 录用日期:  2024-02-05
  • 网络出版日期:  2024-03-13
  • 刊出日期:  2024-08-01

目录

    /

    返回文章
    返回