留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用脱碳气化渣矿化封存CO2制备碳酸钙的影响研究

李翔宇 李旭 樊盼盼 鲍卫仁 常丽萍 王建成

李翔宇, 李旭, 樊盼盼, 鲍卫仁, 常丽萍, 王建成. 利用脱碳气化渣矿化封存CO2制备碳酸钙的影响研究[J]. 燃料化学学报(中英文), 2024, 52(8): 1193-1202. doi: 10.19906/j.cnki.JFCT.2024008
引用本文: 李翔宇, 李旭, 樊盼盼, 鲍卫仁, 常丽萍, 王建成. 利用脱碳气化渣矿化封存CO2制备碳酸钙的影响研究[J]. 燃料化学学报(中英文), 2024, 52(8): 1193-1202. doi: 10.19906/j.cnki.JFCT.2024008
LI Xiangyu, LI Xu, FAN Panpan, BAO Weiren, CHANG Liping, WANG Jiancheng. Study on the impact of using decarbonized gasification slag for CO2 mineralization and storage to prepare calcium carbonate[J]. Journal of Fuel Chemistry and Technology, 2024, 52(8): 1193-1202. doi: 10.19906/j.cnki.JFCT.2024008
Citation: LI Xiangyu, LI Xu, FAN Panpan, BAO Weiren, CHANG Liping, WANG Jiancheng. Study on the impact of using decarbonized gasification slag for CO2 mineralization and storage to prepare calcium carbonate[J]. Journal of Fuel Chemistry and Technology, 2024, 52(8): 1193-1202. doi: 10.19906/j.cnki.JFCT.2024008

利用脱碳气化渣矿化封存CO2制备碳酸钙的影响研究

doi: 10.19906/j.cnki.JFCT.2024008
基金项目: 国家自然科学基金青年项目(22308247)、山西省基础研究计划青年项目(202203021212199)和国家自然科学基金区域创新发展联合基金重点项目(U23A20131)资助
详细信息
    通讯作者:

    E-mail: xyli0813@126.com

    wangjiancheng@tyut.edu.cn

  • 中图分类号: TQ536.4

Study on the impact of using decarbonized gasification slag for CO2 mineralization and storage to prepare calcium carbonate

Funds: The project was supported by National Natural Science Foundation of China (22308247), Shanxi Province Science Foundation for Youths (202203021212199) and the Joint Funds of the National Natural Science Foundation of China (U23A20131).
  • 摘要: 本实验研究了浸出剂种类、浓度、反应时间、温度和液固比等对脱碳气化渣中钙浸出率的影响,并讨论了CO2流量、温度、碳酸化时间对碳酸化效率和生成的沉淀碳酸钙(PCC)晶型结构的影响规律。结果表明,在2 mol/L 盐酸、液固比为20 mL/g、反应温度为50 ℃、反应时间为90 min的浸出条件下,钙浸出率最高,为98.79%。在碳酸化阶段,CO2流量主要影响碳酸化效率,通过优化碳酸化反应条件,CO2流量300 mL/min,反应温度60 ℃,反应120 min时,最高碳酸化效率可达99.59%。而反应温度和时间则会对碳酸钙晶型和形貌产生显著影响,降低反应温度和缩短反应时间更有利于球霰石型碳酸钙的生成。
  • FIG. 3307.  FIG. 3307.

    FIG. 3307.  FIG. 3307.

    图  1  碳酸化反应装置示意图

    Figure  1  Carbonation reaction device diagram

    图  2  循环工艺流程示意图

    Figure  2  Circulation process flow chart

    图  3  脱碳气化灰渣的XRD谱图

    Figure  3  XRD spectrum of decarburization gasification slag

    图  4  (a)盐酸浓度、(b)反应时间、(c)液固比和(d)反应温度对脱碳气化渣钙浸出率的影响

    Figure  4  Effect of (a) HCl concentration, (b) reaction time, (c) liquid-to-solid ratio, and (d) reaction temperature on the leaching rate of calcium from decarbonized gasification slag

    图  5  (a)CO2流量、(b)反应温度和(c)反应时间对CO2碳酸化效率的影响

    Figure  5  Effect of (a) CO2 flow rate, (b) reaction temperature, and (c) reaction time on carbonation efficiency of CO2

    图  6  不同CO2流量下生成碳酸钙的XRD谱图

    Figure  6  XRD plots of calcium carbonate generated under different CO2 flow rates

    图  7  不同CO2流量下生成碳酸钙的扫描电镜图

    Figure  7  SEM plots of calcium carbonate generation at different CO2 flow rates

    (a): 100 mL/min; (b): 200 mL/min; (c): 300 mL/min; (d): 400 mL/min; (e): 500 mL/min.

    图  8  不同碳酸化反应温度下生成碳酸钙的XRD谱图

    Figure  8  XRD plots of calcium carbonate produced at different carbonation reaction temperatures

    图  9  不同碳酸化反应温度下生成碳酸钙的电镜扫描图

    Figure  9  SEM plots of calcium carbonate produced at different carbonation reaction temperatures

    (a): 40 ℃; (b): 50 ℃; (c): 60 ℃; (d): 70 ℃; (e): 80 ℃.

    图  10  不同碳酸化反应时间下生成碳酸钙的XRD谱图

    Figure  10  XRD plots of calcium carbonate produced at different carbonation reaction times

    图  11  不同碳酸化反应时间下生成碳酸钙的电镜扫描图像

    Figure  11  SEM plots of calcium carbonate produced at different carbonation reaction times

    (a): 30 min; (b): 60 min; (c): 90 min; (d): 120 min; (e): 180 min.

    图  12  不同条件下碳酸钙的晶型分布

    Figure  12  Crystallographic distribution of calcium carbonate under different conditions

    C: Calcite; V: Vaterite; A: Aragonite.

    图  13  ACC→球霰石→方解石/文石多阶段结晶路径示意图

    Figure  13  Schematic diagram of the multi-stage crystallization path of ACC→Vaterite→Calcite/Aragonite

    表  1  脱碳气化渣的灰成分分析和烧失量

    Table  1  Ash composition analysis and burn loss of decarburized gasification slag

    Composition Al2O3 Fe2O3 CaO MgO SiO2 SO3 Others Loss
    Content/% 19.13 23.65 8.82 5.00 25.94 13.64 3.82 8.30
    下载: 导出CSV

    表  2  不同浸出剂条件下滤液中的主要金属离子浓度对比

    Table  2  Comparison of major metal ion concentrations in filtrates under different leaching agent conditions

    Leaching agent $I_{\mathrm{C}}^+ $/(mg·L−1 $I_{\mathrm{C}}^- $/(mg·L−1 $I_{\mathrm{A}}^+ $/(mg·L−1 $I_{\mathrm{A}}^- $/(mg·L−1 $I_{\mathrm{F}}^+ $/(mg·L−1 $I_{\mathrm{F}}^- $/(mg·L−1
    NH4Cl 24.04 1.53 36.22 <0.001 25.33 <0.001
    CH3COONH4 0.03 <0.001 <0.001
    NH4HSO4 0.30 <0.001 <0.001
    (NH4)2CO3 0.01 <0.001 <0.001
    CH3COOH 3.61 <0.001 <0.001
    HCl 17.70 21.49 24.63
    $I_{(C/A/F)}^+ $: measured in decarburization gasification slag (mg/L); $I_{(C/A/F)}^- $: Measured in leachate (mg/L); C: Ca2+, A: Al3+, F: Fe3+.
    下载: 导出CSV
  • [1] International Energy Agency (IEA). Global energy & CO2 status report [EB/OL]. (2019-03-26)[2020-12-20].
    [2] WEE J H. A review on carbon dioxide capture and storage technology using coal fly ash[J]. Appl Energy,2013,106:143−151. doi: 10.1016/j.apenergy.2013.01.062
    [3] SEIFRITZ W. CO2 disposal by means of silicates[J]. Nature,1990,345(7):486−486.
    [4] ZHANG Z, BORHANI T N, OLABI A G. Status and perspective of CO2 absorption process[J]. Energy,2020,205:1−16.
    [5] 张建树, 张荣, 毕继诚. CO2 矿化反应基础研究 II. 有机胺介质中碳酸化反应热力学研究[J]. 燃料化学学报,2011,39(11):871−875.

    ZHANG Jianshu, ZHANG Rong, BI Jicheng. Fundamental research on CO2 mineralization II. The thermodynamic equilibrium of carbonation in ternary amine[J]. J Fuel Chem Technol,2011,39(11):871−875.
    [6] REDDY K, JOHN S, WEBER H, et al. Simultaneous capture and mineralization of coal combustion flue gas carbon dioxide (CO2)[J]. Energy Procedia,2011,4:1574−1583. doi: 10.1016/j.egypro.2011.02.027
    [7] DILMORE R, LU P, ALLEN D, et al. Sequestration of CO2 in mixtures of bauxite residue and saline wastewater[J]. Energy Fuels.,2007,22:343−353.
    [8] BERTOS M, LI X, SIMONS S, et al. Investigation of accelerated carbonation for the stabilisation of MSW incinerator ashes and the sequestration of CO2[J]. Green Chem,2004,6(8):428−436. doi: 10.1039/B401872A
    [9] PARK A, FAN L. CO2 mineral sequestration: Physically activated dissolution of serpentine and pH swing process[J]. Chem Eng Sci,2004,59(22/23):5241−5247.
    [10] SANNA A, DRI M, HALL M, et al. Waste materials for carbon capture and storage by mineralisation (CCSM)–A UK perspective[J]. Appl Energy,2012,99:545−554.
    [11] ZEVENHOVEN R, FAGERLUND J, SONGOK J, et al. CO2 mineral sequestration: developments toward large-scale application[J]. Greenhouse Gases: Sci Technol,2011,1(1):48−57. doi: 10.1002/ghg3.7
    [12] REN S, ALDAHRI T, LIU W, et al. CO2 mineral sequestration by using blast furnace slag: from batch to continuous experiments[J]. Energy,2021,214:1−10.
    [13] GAO X, GUO XL, GONG X. Characterization of slag from entrained-flow coal gasification[J]. J East China Univ Sci Technol,2009,35(5):677−683.
    [14] LIU C, LI Y, SUN R, et al. Cyclic CO2 capture of carbide slag modified by pyroligneous acid in calcium looping cycles[J]. Asia Pac J Chem Eng,2014,9(5):678−685. doi: 10.1002/apj.1799
    [15] UKWATTAGE N, RANJITH P, LI X. Steel-making slag for mineral sequestration of carbon dioxide by accelerated carbonation[J]. Measurement,2017,97:15−22. doi: 10.1016/j.measurement.2016.10.057
    [16] MUN M, CHO H. Combustibility analysis of high-carbon fine slags from an entrained flow gasifier[J]. Energy Procedia.,2013,37:6999−7005. doi: 10.1016/j.egypro.2013.06.633
    [17] XUAN D, ZHAN B, POON C, et al. Carbon dioxide sequestration of concrete slurry waste and its valorisation in construction products[J]. Constr Build Mater,2016,113:664−672. doi: 10.1016/j.conbuildmat.2016.03.109
    [18] YADAV V, PRASAD M, KHAN J, et al. Sequestration of carbon dioxide (CO2) using red mud[J]. J Hazard Mater,2010,176(1-3):1044−1050. doi: 10.1016/j.jhazmat.2009.11.146
    [19] YU C, CAI L, JIANG G, et al. Mineral carbonation of CO2 with utilization of coal gasification slags based on chemical looping[J]. Asia-Pac. J Chem Eng,2021,16(4):1−11.
    [20] 范宁, 张逸群, 樊盼盼, 等. 煤气化渣特性分析及资源化利用研究进展[J]. 洁净煤技术,2022,28(8):145−154.

    FAN Ning, ZHANG Yiqun, FAN Panpan, et al. Research progress on characteristic analysis and resource utilization of coal gasification slag[J]. Clean Coal Technol,2022,28(8):145−154.
    [21] WANG H, WANG H, LIU G, et al. In-situ pyrolysis of Taihu blue algae biomass as appealing porous carbon adsorbent for CO2 capture: Role of the intrinsic N[J]. Sci Total Environ,2021,771:1−8.
    [22] PARK H, KANG J, PARK J, et al. One-pot synthesis of novel porous carbon adsorbents derived from poly vinyl chloride for high methane adsorption uptake[J]. Chem Eng J,2022,440:1−9.
    [23] 马子涵, 陈娅, 孙睿, 等. 多孔聚合物制备多孔炭及其应用进展[J]. 当代化工研究,2022,22:10−12. doi: 10.3969/j.issn.1672-8114.2022.15.003

    MA Zihan, CHEN Ya, SUN Rui, et al. Preparation of porous carbon by porous polymer and its application progress[J]. Mod Chem Res,2022,22:10−12. doi: 10.3969/j.issn.1672-8114.2022.15.003
    [24] 张建树, 张荣, 毕继诚. CO2 矿化反应基础研究 I. 镁橄榄石和蛇纹石盐酸浸出动力学研究[J]. 燃料化学学报(中英文),2011,39(9):706−711.

    ZHANG Jianshu, ZHANG Rong, BI Jicheng. Fundamental research on CO2 mineralization I: Leaching kinetics of forsterite and serpentine with hydrochloric acid[J]. J Fuel Chem Technol,2011,39(9):706−711.
    [25] 王中辉, 苏胜, 马智伟, 等. 混合胺溶液耦合 CaO 吸收-矿化 CO2 特性及矿化过程关键影响因素研究[J]. 燃料化学学报(中英文),2022,50(10):1371−1379. doi: 10.1016/S1872-5813(22)60020-3

    WANG Zhonghui, SU Sheng, MA Zhiwei, et al. Study on CO2 absorption-mineralization characteristics of mixed amine solution coupled with CaO and key influencing factors in mineralization process[J]. J Fuel Chem Technol,2022,50(10):1371−1379. doi: 10.1016/S1872-5813(22)60020-3
    [26] CHANG R. , CHOI D, KIM M, et al. Tuning crystal polymorphisms and structural investigation of precipitated calcium carbonates for CO2 mineralization[J]. ACS Sustainable Chem Eng,2017,5(2):1659−1667. doi: 10.1021/acssuschemeng.6b02411
    [27] IZUKA A. , FUJII M, YAMASAKI A, et al. Development of a new CO2 sequestration process utilizing the carbonation of waste cement[J]. Ind Eng Chem Res,2004,43(24):7880−7887. doi: 10.1021/ie0496176
    [28] SPANOS N, KOUTSOUKOS P. The transformation of vaterite to calcite: effect of the conditions of the solutions in contact with the mineral phase[J]. J Cryst Growth,1998,191(4):783−790. doi: 10.1016/S0022-0248(98)00385-6
    [29] OGINO T, SUZUKI T, SAWADA K. The formation and transformation mechanism of calcium carbonate in water[J]. Geochim Cosmochim Acta,1987,51(10):2757−2767. doi: 10.1016/0016-7037(87)90155-4
    [30] RODRIGUEZ J, SHAW S, BENNING L. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystal-lization to calcite, via vaterite[J]. Nanoscale,2011,3:265−271. doi: 10.1039/C0NR00589D
    [31] WEI H, SHEN Q, ZHAO Y, et al. Influence of polyvinylpyrrolidone on the precipitation of calcium carbonate and on the transformation of vaterite to calcite[J]. J Cryst Growth,2003,250(3/4):516−524. doi: 10.1016/S0022-0248(02)02484-3
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  92
  • HTML全文浏览量:  40
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-12
  • 修回日期:  2024-01-14
  • 录用日期:  2024-01-25
  • 网络出版日期:  2024-04-01
  • 刊出日期:  2024-08-01

目录

    /

    返回文章
    返回