留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PdAg/CDs-ZSM-5催化剂的制备及糠醛水相加氢-重排制环戊酮性能研究

刘力 包桂蓉 罗嘉 高鹏 吉学武 邓文瑶

刘力, 包桂蓉, 罗嘉, 高鹏, 吉学武, 邓文瑶. PdAg/CDs-ZSM-5催化剂的制备及糠醛水相加氢-重排制环戊酮性能研究[J]. 燃料化学学报(中英文), 2024, 52(8): 1057-1069. doi: 10.19906/j.cnki.JFCT.2024014
引用本文: 刘力, 包桂蓉, 罗嘉, 高鹏, 吉学武, 邓文瑶. PdAg/CDs-ZSM-5催化剂的制备及糠醛水相加氢-重排制环戊酮性能研究[J]. 燃料化学学报(中英文), 2024, 52(8): 1057-1069. doi: 10.19906/j.cnki.JFCT.2024014
LIU Li, BAO Guirong, LUO Jia, GAO Peng, JI Xuewu, DENG Wenyao. Preparation of PdAg/CDs-ZSM-5 catalyst and performance study on furfural aqueous phase hydrogenation-rearrangement to cyclopentanone[J]. Journal of Fuel Chemistry and Technology, 2024, 52(8): 1057-1069. doi: 10.19906/j.cnki.JFCT.2024014
Citation: LIU Li, BAO Guirong, LUO Jia, GAO Peng, JI Xuewu, DENG Wenyao. Preparation of PdAg/CDs-ZSM-5 catalyst and performance study on furfural aqueous phase hydrogenation-rearrangement to cyclopentanone[J]. Journal of Fuel Chemistry and Technology, 2024, 52(8): 1057-1069. doi: 10.19906/j.cnki.JFCT.2024014

PdAg/CDs-ZSM-5催化剂的制备及糠醛水相加氢-重排制环戊酮性能研究

doi: 10.19906/j.cnki.JFCT.2024014
基金项目: 国家自然科学基金(51966008),云南省重大科技项目(202302AG050011)和云南省基础研究计划项目(202101AT070064)资助
详细信息
    通讯作者:

    E-mail: 1633940830@qq.com

    luojia@xtbg.ac.cn

  • 中图分类号: TK6

Preparation of PdAg/CDs-ZSM-5 catalyst and performance study on furfural aqueous phase hydrogenation-rearrangement to cyclopentanone

Funds: The project was supported by the National Natural Science Foundation of China (51966008),Yunnan Major Scientific and Technological Projects (202302AG050011) and Yunnan Fundamental Research Projects (202101AT070064).
  • 摘要: 以沸石分子筛(ZSM-5)为载体,碳点(carbon dots, CDs)为还原剂和稳定剂,通过光照还原法制备了双金属PdAg/CDs-ZSM-5催化剂,用于糠醛(furfural, FFA)水相加氢-重排制备环戊酮(cyclopentanone, CPO)反应。采用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、氨气程序升温化学吸附(NH3-TPD)和吡啶红外(Py-FTIR)等手段对催化剂进行了表征。结果表明,CDs具有良好的还原性和丰富的Lewis酸性位点,能够将Pd2+、Ag+还原为金属单质并形成纳米合金结构,复合催化剂中适宜的酸性位点与PdAg合金之间的协同作用使得PdAg/CDs-ZSM-5催化剂在最优反应条件下,对FFA转化率达到100%,目标产物CPO选择性为92.6%。催化剂重复使用五次后仍能保持较高的活性与稳定性。
  • FIG. 3294.  FIG. 3294.

    FIG. 3294.  FIG. 3294.

    图  1  CDs的(a) TEM图像;(b) HRTEM 图像;(c) XRD谱图;(d) FT-IR谱图;(e) C 1s、(f) N 1s和(g) O 1s的高分辨率XPS谱图;(h) UV-vis光谱谱图以及(i) Py-FTIR谱图

    Figure  1  CDs of (a) TEM image; (b) HRTEM image; (c) XRD spectrum; (d) infrared spectrum; high-resolution XPS of (e) C 1s, (f) N 1s, and (g) O 1s; (h) UV-vis spectrum and (i) Py-FTIR spectrum

    图  2  四种复合催化剂的XRD谱图

    Figure  2  XRD patterns of catalysts

    图  3  复合催化剂的FT-IR谱图

    Figure  3  FT-IR spectra of catalysts

    图  4  ZSM-5和PdAg/CDs-ZSM-5催化剂的(a)N2吸附-脱附等温线和(b)孔径分布

    Figure  4  (a) N2 adsorption-desorption isotherms and (b) corresponding pore size distribution curves for ZSM-5 and PdAg/CDs-ZSM-5

    图  5  (a)PdAg/CDs-ZSM-5的XPS全谱图;(b)PdAg/CDs-ZSM-5的C 1s精细谱图;(c)PdAg/CDs-ZSM-5和Pd/CDs-ZSM-5的Pd 3d精细谱图;(d)PdAg/CDs-ZSM-5和Ag/CDs-ZSM-5 的Ag 3d精细谱图

    Figure  5  (a) XPS Full spectrum of PdAg/CDs-ZSM-5 and high-resolution spectra for (b) C 1s of PdAg/CDs-ZSM-5; (c) Pd 3d of PdAg/CDs-ZSM-5 and Pd/CDs-ZSM-5; (d) Ag 3d of PdAg/CDs-ZSM-5 and Ag/CDs-ZSM-5

    图  6  PdAg/CDs-ZSM-5的(a)−(d)SEM图像;(e)EDS能谱图;(f)−(i)EDS元素映射图像

    Figure  6  (a)−(d) SEM images, (e) EDS spectrograms, (f)−(i) EDS element mappings of PdAg/CDs-ZSM-5

    图  7  PdAg/CDs-ZSM-5的(a)−(e)TEM图像;(f)SAED图像;(g)−(j)EDS元素映射图像

    Figure  7  (a)−(e) TEM images; (f) SAED image; (g)−(j) EDS element mappings of PdAg/CDs-ZSM-5

    图  8  ZSM-5与PdAg/CDs-ZSM-5的(a)NH3-TPD谱图和(b)Py-FTIR谱图

    Figure  8  NH3-TPD spectra (a) and Py-FTIR spectra (b) of ZSM-5 and PdAg/CDs-ZSM-5

    图  9  反应温度对PdAg/CDs-ZSM-5催化性能的影响

    Figure  9  Effect of reaction temperatures on the catalytic activity of PdAg/CDs-ZSM-5Reaction conditions: 100 mg PdAg/CDs-ZSM-5, 2 mmol FFA, 2 MPa H2, 30 mL H2O, 4 h.

    图  10  反应时间对PdAg/CDs-ZSM-5催化性能的影响

    Figure  10  Effect of reaction time on the catalytic activity of PdAg/CDs-ZSM-5Reaction conditions: 100 mg PdAg/CDs-ZSM-5, 2 mmol FFA, 2 MPa H2, 30 mL H2O, 160 ℃.

    图  11  H2初压对PdAg/CDs-ZSM-5催化性能的影响

    Figure  11  Effect of H2 initial pressure on the catalytic activity of PdAg/CDs-ZSM-5Reaction conditions: 100 mg PdAg/CDs-ZSM-5, 2 mmol FFA, 30 mL H2O, 160 ℃, 4 h.

    图  12  PdAg/CDs-ZSM-5催化FFA加氢-重排制备CPO的反应路径示意图

    Figure  12  Reaction path of FFA Hydrogenation-rearrangement to CPO catalyzed by PdAg/CDs-ZSM-5

    图  13  PdAg/CDs-ZSM-5催化剂的循环稳定性

    Figure  13  Cyclic stability of PdAg/CDs-ZSM-5 catalysts

    表  1  ZSM-5和PdAg/CDs-ZSM-5的微观结构

    Table  1  Comparison of microscopic structure parameters of the ZSM-5 and PdAg/CDs-ZSM-5

    Sample BET surface area/(m2·g−1) Pore volume/(cm3·g−1) Pore diameter/nm
    ZSM-5 374 0.19 2.02
    PdAg/CDs-ZSM-5 298 0.15 2.07
    下载: 导出CSV

    表  2  不同催化剂上FFA加氢及重排的转化率及产物选择性

    Table  2  Conversion and products selectivity of FFA hydrogenation and rearrangement over different catalysts a

    Entry Catalyst Conversion/% Selectivity/% C balance/%
    FAL THFA CPO CPL
    1 ZSM-5 11.3 53.8 2.1 39.7 96
    2 Ag/CDs-ZSM-5 43.6 83.4 4.8 10.5 0.8 99
    3 Pd/CDs-ZSM-5 97.2 0.3 21.5 67.1 6.5 96
    4 PdAg/CDs-ZSM-5 100 0.5 1.7 92.6 2.3 97
    5 Pd/CDs-ZSM-5+ Ag/CDs-ZSM-5 82.9 17.8 16.5 56.8 5.2 96
    a: Conditions: 2 mmol FFA, 100 mg catalysts, 160 ℃, 2 MPa H2, 4 h, 30 mL H2O.
    下载: 导出CSV

    表  3  ICP-OES测定的不同催化剂中金属的含量

    Table  3  Determination of metal content in different catalysts by ICP-OES

    Catalyst Pd loading w/% Ag loading w/%
    Pd/CDs-ZSM-5 8.93
    Ag/CDs-ZSM-5 8.72
    PdAg/CDs-ZSM-5 4.51 4.47
    PdAg/CDs-ZSM-5(5 cycles) 4.37 4.29
    下载: 导出CSV
  • [1] BOHRE A, ALAM M I, AVASTHI K, et al. Low temperature transformation of lignocellulose derived bioinspired molecules to aviation fuel precursor over magnesium-lanthanum mixed oxide catalyst[J]. Appl Catal B: Environ,2020,276:119069.
    [2] YUAN E X, WANG C L, WU C, et al. Constructing hierarchical structures of Pd catalysts to realize reaction pathway regulation of furfural hydroconversion[J]. J Catal,2023,421:30−44. doi: 10.1016/j.jcat.2023.03.009
    [3] LIN W, ZHANG Y X, MA Z X, et al. Synergy between Ni3Sn2 alloy and lewis acidic ReOx enables selectivity control of furfural hydrogenation to cyclopentanone[J]. Appl Catal B: Environ,2024,340:123191.
    [4] YANG Y L, DU Z T, HUANG Y Z, et al. Conversion of furfural into cyclopentanone over Ni-Cu bimetallic catalysts[J]. Green Chem,2013,15(7):1932−1940.
    [5] MIRONENKO R M, BELSKAYA O B, TALSI V P, et al. Mechanism of Pd/C-catalyzed hydrogenation of furfural under hydrothermal conditions[J]. J Catal,2020,389:721−734. doi: 10.1016/j.jcat.2020.07.013
    [6] HU Z, XIE A D, CHEN C, et al. Facile synthesis of N, P co-doped carbon encapsulated ni catalyst for green production of cyclopentanone from biomass derivative furfural[J]. Fuel,2022,319:123815.
    [7] YOON Y, ROUSSEAU R, WEBER R S, et al. First-principles study of phenol hydrogenation on Pt and Ni catalysts in aqueous phase[J]. J Am Chem Soc,2014,136(29):10287−10298.
    [8] DENG Q, GAO R, LI X, et al. Hydrogenative ring-rearrangement of biobased furanic aldehydes to cyclopentanone compounds over Pd/pyrochlore by introducing oxygen vacancies[J]. ACS Catal,2020,10(13):7355−7366. doi: 10.1021/acscatal.0c01666
    [9] PHAM H N, ANDERSON A E, JOHNSON R L, et al. Improved hydrothermal stability of mesoporous oxides for reactions in the aqueous phase[J]. Angew Chem-Int Ed,2012,51(52):13163−13167.
    [10] HUO J J, TESSONNIER J P, SHANKS B H. Improving hydrothermal stability of supported metal catalysts for biomass conversions: A review[J]. ACS Catal,2021,11(9):5248−5270. doi: 10.1021/acscatal.1c00197
    [11] GAO J, ZHU M M, HUANG H, et al. Advances, challenges and promises of carbon dots[J]. Inorg Chem Front,2017,4(12):1963−1986. doi: 10.1039/C7QI00614D
    [12] YAO B W, HUANG H, LIU Y, et al. Carbon dots: A small conundrum[J]. Trends Chem,2019,1(2):235−246.
    [13] KANG Z H, LEE S T. Carbon dots: Advances in nanocarbon applications[J]. Nanoscale,2019,11(41):19214−19224.
    [14] HAN Y D, WU J, LI Y, et al. Carbon dots enhance the interface electron transfer and photoelectrochemical kinetics in TiO2 photoanode[J]. Appl Catal B: Environ,2022,304:120983.
    [15] LIU Y M, ROY S, SARKAR S, et al. A review of carbon dots and their composite materials for electrochemical energy technologies[J]. Carbon Energy,2021,3(5):795−826.
    [16] LU S Y, XIAO G J, SUI L Z, et al. Piezochromic carbon dots with two-photon fluorescence[J]. Angew Chem-Int Ed,2017,56(22):6187−6191. doi: 10.1002/anie.201700757
    [17] BAYAN R, KARAK N. Photo-assisted synthesis of a Pd-Ag@CQD nanohybrid and its catalytic efficiency in promoting the Suzuki-Miyaura cross-coupling reaction under ligand-free and ambient conditions[J]. ACS Omega,2017,2(12):8868−8876.
    [18] DEY D, BHATTACHARYA T, MAJUMDAR B, et al. Carbon dot reduced palladium nanoparticles as active catalysts for carbon-carbon bond formation[J]. Dalton Trans,2013,42(38):13821−13825. doi: 10.1039/c3dt51234g
    [19] MURUGESAN P, LIBIYA N, MOSES J A, et al. Fluorescence resonance energy transfer-based sensor with silver-conjugated orange peel waste-derived carbon dots for melamine detection[J]. Carbon Lett,2023,33(7):2335−2348.
    [20] ZHANG J, CHEN Y, TAN J, et al. The synthesis of rhodium/carbon dots nanoparticles and its hydrogenation application[J]. Appl Surf Sci,2017,396:1138−1145. doi: 10.1016/j.apsusc.2016.11.101
    [21] LI W D, WEI Z H, WANG B Y, et al. Carbon quantum dots enhanced the activity for the hydrogen evolution reaction in ruthenium-based electrocatalysts[J]. Mat Chem Front,2020,4(1):277−284. doi: 10.1039/C9QM00618D
    [22] DUAN Y, HUANG Y J, CHEN S Y, et al. Cu-doped carbon dots as catalysts for the chemiluminescence detection of glucose[J]. ACS Omega,2019,4(6):9911−9917. doi: 10.1021/acsomega.9b00738
    [23] GUO S J, ZHAO S Q, GAO J, et al. Cu-cdots nanocorals as electrocatalyst for highly efficient CO2 reduction to formate[J]. Nanoscale,2017,9(1):298−304.
    [24] LI W D, LIU Y, WU M, et al. Carbon-quantum-dots-loaded ruthenium nanoparticles as an efficient electrocatalyst for hydrogen production in alkaline media[J]. Adv Mater,2018,30(31):1800676.
    [25] LIU Y P, LEI J H, WANG G, et al. Toward strong near-infrared absorption/emission from carbon dots in aqueous media through solvothermal fusion of large conjugated perylene derivatives with post-surface engineering[J]. Adv Sci,2022,9(23):2202283.
    [26] LU S Y, SUI L Z, LIU J J, et al. Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence[J]. Adv Mater,2017,29(15):1603443.
    [27] CHANG Q, YANG S S, XUE C R, et al. Nitrogen-doped carbon dots encapsulated in the mesoporous channels of SBA-15 with solid-state fluorescence and excellent stability[J]. Nanoscale,2019,11(15):7247−7255.
    [28] JOKAR F, ALAVI S M, REZAEI M. Investigating the hydroisomerization of n-pentane using Pt supported on ZSM-5, desilicated ZSM-5, and modified ZSM-5/MCM-41[J]. Fuel,2022,324:124511.
    [29] WU Z L, WANG J, WANG S, et al. Controllable chemoselective hydrogenation of furfural by PdAg/C bimetallic catalysts under ambient operating conditions: An interesting Ag switch[J]. Green Chem,2020,22(4):1432−1442.
    [30] CORREGIDOR P F, CUESTA P M, ACOSTA D E, et al. Composite ZSM-5/MCM-41 material obtained from a green resource and its enhanced catalytic performance in the reaction of vinyl acetate and isoamyl alcohol[J]. Appl Catal A: Gen,2019,587:117262.
    [31] TAMIZHDURAI P, KRISHNAN P S, RAMESH A, et al. Isomerization of hydrocarbons over Pt supported on micro-mesoporous ZSM-5[J]. Polyhedron,2018,154:314−324.
    [32] FU L C, XIONG Q A, WANG Q H, et al. Catalytic pyrolysis of waste polyethylene using combined CaO and Ga/ZSM-5 catalysts for high value-added aromatics production[J]. ACS Sustainable Chem Eng,2022,10(29):9612−9623. doi: 10.1021/acssuschemeng.2c02881
    [33] BAO K L, LIAO F, ZHOU Y J, et al. Carbon dots regulate the multiple-proton-electron catalytic process and switch carbon dioxide reduction to hydrogen evolution reaction of PdCu alloy electrocatalyst[J]. Appl Surf Sci,2023,619:156784.
    [34] YANG G X, KUWAHARA Y, MORI K, et al. PdAg alloy nanoparticles encapsulated in N-doped microporous hollow carbon spheres for hydrogenation of CO2 to formate[J]. Appl Catal B: Environ,2021,283:119268.
    [35] YANG G X, YIN H B, LIU W H, et al. Synergistic Ag/TiO2-N photocatalytic system and its enhanced antibacterial activity towards Acinetobacter baumannii[J]. Appl Catal B: Environ,2018,224:175−182.
    [36] WANG X J, ZHANG R Y, MA X Y, et al. Carbon dots@noble metal nanoparticle composites: Research progress report[J]. Analyst,2024,149(3):665−688. doi: 10.1039/D3AN01580G
    [37] LIU H, LIU X Y, YANG W W, et al. Photocatalytic dehydrogenation of formic acid promoted by a superior PdAg@g-C3/N4 Mott-Schottky heterojunction[J]. J Mater Chem A,2019,7(5):2022−2026. doi: 10.1039/C8TA11172C
    [38] ZHANG Z J, LUO Y X, LIU S W, et al. A PdAg-CeO2 nanocomposite anchored on mesoporous carbon: A highly efficient catalyst for hydrogen production from formic acid at room temperature[J]. J Mater Chem A,2019,7(37):21438−21446. doi: 10.1039/C9TA06987A
    [39] ZHANG Y F, FAN G L, YANG L, et al. Efficient conversion of furfural into cyclopentanone over high performing and stable Cu/ZrO2 catalysts[J]. Appl Catal A: Gen,2018,561:117−126.
    [40] GAO X, DING Y Y, PENG L L, et al. On the effect of zeolite acid property and reaction pathway in Pd-catalyzed hydrogenation of furfural to cyclopentanone[J]. Fuel,2022,314:123074.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  50
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-19
  • 修回日期:  2024-02-27
  • 录用日期:  2024-03-11
  • 网络出版日期:  2024-04-24
  • 刊出日期:  2024-08-01

目录

    /

    返回文章
    返回