留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超微孔废纸碳气凝胶的制备及其CO2吸附性能研究

顾锦阳 张雄 张俊杰 邵敬爱 张世红 杨海平 陈汉平

顾锦阳, 张雄, 张俊杰, 邵敬爱, 张世红, 杨海平, 陈汉平. 超微孔废纸碳气凝胶的制备及其CO2吸附性能研究[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024016
引用本文: 顾锦阳, 张雄, 张俊杰, 邵敬爱, 张世红, 杨海平, 陈汉平. 超微孔废纸碳气凝胶的制备及其CO2吸附性能研究[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024016
GU Jinyang, ZHANG Xiong, ZHANG Junjie, SHAO Jingai, ZHANG Shihong, YANG Haiping, CHEN Hanping. Preparation of ultra-microporous waste paper carbon aerogel and its CO2 adsorption performance[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024016
Citation: GU Jinyang, ZHANG Xiong, ZHANG Junjie, SHAO Jingai, ZHANG Shihong, YANG Haiping, CHEN Hanping. Preparation of ultra-microporous waste paper carbon aerogel and its CO2 adsorption performance[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024016

超微孔废纸碳气凝胶的制备及其CO2吸附性能研究

doi: 10.19906/j.cnki.JFCT.2024016
基金项目: 国家自然科学基金(52176187,52306245),浙江大学能源清洁利用国家重点实验室开放基金(ZJUCEU2022008)和国家资助博士后研究人员计划(GZB20230235)资助
详细信息
    通讯作者:

    E-mail: zhangxiong107@hust.edu.cn

    junjiezhang107@163.com

  • 中图分类号: TK6

Preparation of ultra-microporous waste paper carbon aerogel and its CO2 adsorption performance

Funds: The project was supported by National Natural Science Foundation of China (52176187, 52306245), Open Fund Project of State Key Laboratory of Clean Energy Utilization of Zhejiang University (ZJUCEU2022008) and the Postdoctoral Fellowship Program of CPSF under Grant Number (GZB20230235).
  • 摘要: 气候变化的加剧要求更加绿色高效的碳减排技术和产品的开发。固废和生物质衍生的常规CO2碳质吸附剂材料吸附效果较差,需要进行额外的活化改性以提升多孔碳的吸附性能。本工作以废纸为原料,经过简单预处理和溶胶凝胶炭化工艺,得到微孔高度发达的超微孔废纸碳气凝胶,探究了不同种类废纸和制备温度的影响。对材料的理化特性和CO2吸附性能进行了表征和测试,结果表明,废纸碳气凝胶的孔隙结构发达,呈类蜂窝状。打印纸为原料,800 ℃下制备的废纸碳气凝胶具有大比表面积1369.94 m2/g、高孔容0.59 cm3/g和孔径为0.4−0.8 nm的超微孔。无需改性,0 ℃时的CO2吸附量为247 mg/g,对应CO2/N2吸附选择性为11,25 ℃时的动力学吸附量为151 mg/g,七次吸脱附循环的平均波动幅度小于5%,对烟气浓度CO2(10%)的捕获量为42 mg/g。废纸碳气凝胶展现出优异的CO2吸附性能和再生稳定性,优于固废和生物质衍生的常规炭材料。本工作也为固废处置和资源化利用提供了新思路。
  • 图  1  固定床吸附台架示意图[27]

    Figure  1  Schematic diagram of fixed bed adsorption bench[27]

    图  2  不同样品的TG/DTG曲线

    Figure  2  TG/DTG curves of different samples

    图  3  废纸碳气凝胶的SEM图像

    Figure  3  SEM images of waste paper carbon aerogels

    图  4  不同样品的N2吸附-脱附等温曲线和孔径分布

    Figure  4  N2 isothermal adsorption and desorption curves and pore size distribution of different samples

    图  5  废纸碳气凝胶的微孔孔径分布

    Figure  5  Micropore size distribution of waste paper carbon aerogels

    图  6  废纸碳气凝胶的红外光谱谱图

    Figure  6  Infrared spectra of waste paper carbon aerogels

    图  7  废纸碳气凝胶的CO2吸附等温曲线

    Figure  7  CO2 isothermal adsorption curves of waste paper carbon aerogels

    图  8  废纸碳气凝胶的CO2动力学吸附量和循环吸附量

    Figure  8  Kinetic CO2 adsorption capacity and cyclic adsorption capacity of waste paper carbon aerogels

    图  9  废纸碳气凝胶的吸附动力学模型拟合曲线

    Figure  9  Fitting curves of adsorption kinetics model of waste paper carbon aerogels

    图  10  废纸碳气凝胶的CO2吸附穿透曲线和吸附量

    Figure  10  CO2 adsorption breakthrough curve and adsorption capacity of waste paper carbon aerogels

    表  1  不同废纸以及微晶纤维素的工业分析和元素分析

    Table  1  Industrial and elemental analysis of different waste papers and microcrystalline cellulose

    SampleProximate analysis w/%Uitimate analysis w/%
    WAVFCCHNO*
    MC44.446.170.0049.38
    DYZ2.7118.4276.272.6037.185.290.1357.40
    CJZ2.630.3585.6211.4042.966.460.1950.39
    WLZ3.0615.2473.398.3139.735.540.4154.32
    Note: The oxygen content ( O * ) is calculated by the subtraction method, which is the estimated value.
    下载: 导出CSV

    表  2  不同样品的孔结构

    Table  2  Pore structure parameters of different samples

    Sample SBET/(m2·g−1) Smicro/(m2·g−1) Smicro/SBET vtotal/(cm3·g−1) vmicro/(cm3·g−1) vmicro/vtotal d/nm
    DYZ-600 22.21 2.76 12.41% 0.03 0.00 3.08% 5.85
    DYZ-700 957.82 901.86 94.16% 0.42 0.35 84.59% 1.74
    DYZ-800 1369.94 1291.64 94.28% 0.59 0.51 85.34% 1.73
    DYZ-900 1426.33 1336.66 93.71% 0.62 0.53 85.19% 1.74
    CJZ-800 1130.76 1078.77 95.40% 0.48 0.42 87.57% 1.70
    WLZ-800 1262.72 1133.42 89.76% 0.62 0.45 73.01% 1.95
    DYZ-800-0.5 1497.85 1346.92 89.92% 0.71 0.55 77.57% 1.89
    DYZ-800-1 1602.58 1480.85 92.40% 0.74 0.60 80.39% 1.85
    MC-800 894.02 818.44 91.55% 0.40 0.33 82.83% 1.77
    下载: 导出CSV

    表  3  不同废纸碳气凝胶的吸附性能

    Table  3  Adsorption performance parameters of different waste paper carbon aerogels

    Sample Q0 ℃/(mg·g−1) Q25 ℃/(mg·g−1) CO2/N2 selectivity
    DYZ-800 247 158 11
    DYZ-800-1 233 144 8
    CJZ-800 227 151 12
    WLZ-800 222 143 9
    下载: 导出CSV

    表  4  吸附动力学模型拟合

    Table  4  Adsorption kinetic model fitting results parameter table

    Sample Quasi-first-order Quasi-second-order Bangham
    $ {k}_{1} $ $ {q}_{{\mathrm{e}}} $ $ {R}^{2} $ $ {k}_{2} $ $ {q}_{{\mathrm{e}}} $ $ {R}^{2} $ $ {k}_{3} $ $ {q}_{{\mathrm{e}}} $ α $ {R}^{2} $
    DYZ-800 0.101 147.37 0.986 0.001 166.67 0.978 0.184 154.01 0.715 0.998
    DYZ-800-1 0.091 136.93 0.991 0.001 156.81 0.980 0.162 143.65 0.730 0.998
    CJZ-800 0.115 138.39 0.981 0.001 154.22 0.973 0.214 143.90 0.697 0.998
    WLZ-800 0.093 123.18 0.985 0.001 140.55 0.980 0.168 129.06 0.726 0.998
    下载: 导出CSV
  • [1] SUN R, SHEN J, GRASBY S E, et al. CO2 buildup drove global warming, the Marinoan deglaciation, and the genesis of the Ediacaran cap carbonates[J]. Precambrian Res,2022,383:106891. doi: 10.1016/j.precamres.2022.106891
    [2] BHATTACHARYYA S S, LEITE F F G D, ADEYEMI M A, et al. A paradigm shift to CO2 sequestration to manage global warming-With the emphasis on developing countries[J]. Sci Total Environ,2021,790:148169. doi: 10.1016/j.scitotenv.2021.148169
    [3] SZULEJKO J E, KUMAR P, DEEP A, et al. Global warming projections to 2100 using simple CO2 greenhouse gas modeling and comments on CO2 climate sensitivity factor[J]. Atmos Pollut Res,2017,8(1):136−140. doi: 10.1016/j.apr.2016.08.002
    [4] TIN N T, HUYEN N T T, TU P M, et al. Facile fabrication of carbon aerogel by cellulose extracted from tea grounds and carboxymethyl cellulose for adsorption and energy storage applications[J]. Mater Lett,2023,342:134304. doi: 10.1016/j.matlet.2023.134304
    [5] SONG M, SHAO F, WANG L, et al. Biomass-derived porous carbon aerogels for effective solar thermal energy storage and atmospheric water harvesting[J]. Sol Energy Mater Sol Cells,2023,262:112532. doi: 10.1016/j.solmat.2023.112532
    [6] JI Z, ABDALKARIM S Y H, LI H, et al. Waste pomelo peels-derived ultralow density 3D-porous carbon aerogels: Mechanisms of “Soft-rigid” structural formation and solar-thermal energy storage conversion[J]. Sol Energy Mater Sol Cells,2023,259:112453. doi: 10.1016/j.solmat.2023.112453
    [7] NI J, GAO Y, SUN Y, et al. High-efficiency removal of antibiotic pollutants by magnetic carbon aerogel: Inherent roles of adsorption synergistic catalysis[J]. J Cleaner Prod,2022,375:134105. doi: 10.1016/j.jclepro.2022.134105
    [8] LING Y, TAN S, WANG D, et al. An experimental and DFT study on enhanced elemental mercury removal performance via cerium chloride modified carbon aerogel: A synergistic effect between chemical adsorption and thermal catalysis[J]. Chem Eng J,2021,425:127344. doi: 10.1016/j.cej.2020.127344
    [9] ZHAO Y, JIAO L, LIU Y, et al. A synergistic effect between nanoconfinement of carbon aerogels and catalysis of CoNiB nanoparticles on dehydrogenation of LiBH4[J]. Int J Hydrogen Energy,2014,39(2):917−926. doi: 10.1016/j.ijhydene.2013.10.137
    [10] WANG X, LIU X, LI F, et al. Multifunctional 3D magnetic carbon aerogel for adsorption separation and highly sensitive SERS detection of malachite green[J]. Chemosphere,2023,339:139654. doi: 10.1016/j.chemosphere.2023.139654
    [11] REHMAN A, PARK S-J. Tunable nitrogen-doped microporous carbons: Delineating the role of optimum pore size for enhanced CO2 adsorption[J]. Chem Eng J,2019,362:731−742. doi: 10.1016/j.cej.2019.01.063
    [12] AMIBO T A, KONOPACKA-ŁYSKAWA D. The influence of α, ω-diols and SiO2 particles on CO2 absorption and NH3 escaping during carbon dioxide capture in ammonia solutions[J]. J CO2 Util,2024,80:102698. doi: 10.1016/j.jcou.2024.102698
    [13] HASAN H F, AL-SUDANI F T, ALBAYATI T M, et al. Solid adsorbent material: A review on trends of post-combustion CO2 capture[J]. Process Saf Environ Prot,2024,182:975−988. doi: 10.1016/j.psep.2023.12.025
    [14] DAS A, PEU S D, HOSSAIN M S, et al. Advancements in adsorption based carbon dioxide capture technologies - A comprehensive review[J]. Heliyon,2023,9(12):e22341. doi: 10.1016/j.heliyon.2023.e22341
    [15] YIN Y, LIU Q, WANG J, et al. Recent insights in synthesis and energy storage applications of porous carbon derived from biomass waste: A review[J]. Int J Hydrogen Energy,2022,47(93):39338−39363. doi: 10.1016/j.ijhydene.2022.09.121
    [16] TIAN Z, QIU Y, ZHOU J, et al. The direct carbonization of algae biomass to hierarchical porous carbons and CO2 adsorption properties[J]. Mater Lett,2016,180:162−165. doi: 10.1016/j.matlet.2016.05.169
    [17] WELDEKIDAN H, PATEL H, MOHANTY A, et al. Synthesis of porous and activated carbon from lemon peel waste for CO2 adsorption[J]. Carbon Capture Sci Technol,2024,10:100149. doi: 10.1016/j.ccst.2023.100149
    [18] ZHOU X, ZHU L, DONG W, et al. Solving two environmental problems simultaneously: Microporous carbon derived from mixed plastic waste for CO2 capture[J]. Chemosphere,2023,345:140546. doi: 10.1016/j.chemosphere.2023.140546
    [19] WANG W, WANG Z, JIANG L, et al. Construction of hierarchically porous carbon from plastic waste for CO2 capture and separation[J]. Mater Today Sustainable,2023,21:100280. doi: 10.1016/j.mtsust.2022.100280
    [20] PATEL H, WELDEKIDAN H, MOHANTY A, et al. Effect of physicochemical activation on CO2 adsorption of activated porous carbon derived from pine sawdust[J]. Carbon Capture Sci Technol,2023,8:100128. doi: 10.1016/j.ccst.2023.100128
    [21] LUO L, YANG C, LIU F, et al. Heteroatom-N, S co-doped porous carbons derived from waste biomass as bifunctional materials for enhanced CO2 adsorption and conversion[J]. Sep Purif Technol,2023,320:124090. doi: 10.1016/j.seppur.2023.124090
    [22] MAI N T, MAI P T, DINH T T M, et al. Towards cost-effective CO2 adsorption materials: Case of CuBTC - Hydrochar composite[J]. Mater Today Commun,2024,38:107619. doi: 10.1016/j.mtcomm.2023.107619
    [23] GUO F, WANG H, QIU G, et al. Development of CO2 adsorption materials from recycling spent tire char via orthogonal design: Optimal solution and thermodynamic evaluation[J]. Colloid Surf A-Physicochem Eng Asp,2023,673:131749. doi: 10.1016/j.colsurfa.2023.131749
    [24] ZHANG J, HUANG D, SHAO J, et al. A new nitrogen-enriched biochar modified by ZIF-8 grafting and annealing for enhancing CO2 adsorption[J]. Fuel Process Technol,2022,231:107250. doi: 10.1016/j.fuproc.2022.107250
    [25] LI Y, ZHANG G, WU C, et al. Novel nitrogen-enriched activated carbon with tunable microporosity from agricultural and plastic waste for CO2 adsorption[J]. J Environ Chem Engy,2023,11(6):111257. doi: 10.1016/j.jece.2023.111257
    [26] AL-ABSI A A, DOMIN A, MOHAMEDALI M, et al. CO2 capture using in-situ polymerized amines into pore-expanded-SBA-15: Performance evaluation, kinetics, and adsorption isotherms[J]. Fuel,2023,333:126401. doi: 10.1016/j.fuel.2022.126401
    [27] ZHANG J, HUANG D, SHAO J, et al. Activation-free synthesis of nitrogen-doped biochar for enhanced adsorption of CO2[J]. J Cleaner Prod,2022,355:131642. doi: 10.1016/j.jclepro.2022.131642
    [28] CHAPARALA V, RAVI KIRAN SASTRY G, PHANI PRASANTHI P. Thermal degradation study of cotton waste pulp-based cellulose nanocrystals[J]. Mater Today: Proc, 2023, in press.
    [29] CAO X, ZHANG J, CEN K, et al. Investigation of the relevance between thermal degradation behavior and physicochemical property of cellulose under different torrefaction severities[J]. Biomass Bioenergy,2021,148:106061. doi: 10.1016/j.biombioe.2021.106061
    [30] D’ACIERNO F, HAMAD W Y, MICHAL C A, et al. Thermal degradation of cellulose filaments and nanocrystals[J]. Biomacromolecules,2020,21(8):3374−3386. doi: 10.1021/acs.biomac.0c00805
    [31] DENG L, ZHAO Y, SUN S, et al. Preparation of corn straw-based carbon by “carbonization-KOH activation” two-step method: Gas-solid product characteristics, activation mechanism and hydrogen storage potential[J]. Fuel,2024,358:130134. doi: 10.1016/j.fuel.2023.130134
    [32] GóMEZ I C, CRUZ O F, SILVESTRE-ALBERO J, et al. Role of KCl in activation mechanisms of KOH-chemically activated high surface area carbons[J]. J CO2 Util,2022,66:102258. doi: 10.1016/j.jcou.2022.102258
    [33] SHI S, LIU Y. Nitrogen-doped activated carbons derived from microalgae pyrolysis by-products by microwave/KOH activation for CO2 adsorption[J]. Fuel,2021,306:121762. doi: 10.1016/j.fuel.2021.121762
    [34] MA X, ZHOU S, LI J, et al. Natural microfibrils/regenerated cellulose-based carbon aerogel for highly efficient oil/water separation[J]. J Hazard Mater,2023,454:131397. doi: 10.1016/j.jhazmat.2023.131397
    [35] DONG Z, ZHONG L, ZHANG Y, et al. Construction of multifunctional cellulose nanofibers/reduced graphene oxide carbon aerogels by bidirectional freezing for supercapacitor electrodes and strain sensors[J]. Diamond Relat Mater,2023,140:110555. doi: 10.1016/j.diamond.2023.110555
    [36] DINDA S. In-situ grafted amine functionalized metal-organic frameworks for CO2 capture: Preparation and bench-scale performance evaluation[J]. Mater Today Commun,2023,35:105927. doi: 10.1016/j.mtcomm.2023.105927
    [37] F. D. MARTINS V, MIGUEL C V, GONçALVES J C, et al. Modeling of a cyclic sorption–desorption unit for continuous high temperature CO2 capture from flue gas[J]. Chem Eng J,2022,434:134704. doi: 10.1016/j.cej.2022.134704
    [38] DING Y, MA L, ZENG F, et al. Synthesis and CO2 adsorption kinetics of aluminum Fumarate MOFs pellet with high recovery[J]. Energy,2023,263:125723. doi: 10.1016/j.energy.2022.125723
    [39] YANG F, ZHU X, WU J, et al. Kinetics and mechanism analysis of CO2 adsorption on LiX@ZIF-8 with core shell structure[J]. Powder Technol,2022,399:117090. doi: 10.1016/j.powtec.2021.117090
    [40] QIN C, JIANG Y, ZUO S, et al. Investigation of adsorption kinetics of CH4 and CO2 on shale exposure to supercritical CO2[J]. Energy,2021,236:121410. doi: 10.1016/j.energy.2021.121410
    [41] AN X, LI T, CHEN J, et al. 3D-hierarchical porous functionalized carbon aerogel from renewable cellulose: An innovative solid-amine adsorbent with high CO2 adsorption performance[J]. Energy,2023,274:127392. doi: 10.1016/j.energy.2023.127392
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  89
  • HTML全文浏览量:  30
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-20
  • 修回日期:  2024-03-28
  • 录用日期:  2024-03-28
  • 网络出版日期:  2024-04-29

目录

    /

    返回文章
    返回