留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改性锡丝光沸石催化混合糖脱水制备5-羟甲基糠醛

张若楠 李钢 麻忠敏 吕强

张若楠, 李钢, 麻忠敏, 吕强. 改性锡丝光沸石催化混合糖脱水制备5-羟甲基糠醛[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024018
引用本文: 张若楠, 李钢, 麻忠敏, 吕强. 改性锡丝光沸石催化混合糖脱水制备5-羟甲基糠醛[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024018
ZHANG Ruonan, LI Gang, MA Zhongmin, LÜ Qiang. Dehydration of sugar mixtures to 5-hydroxymethylfurfural catalyzed by modified tin-mordenite[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024018
Citation: ZHANG Ruonan, LI Gang, MA Zhongmin, LÜ Qiang. Dehydration of sugar mixtures to 5-hydroxymethylfurfural catalyzed by modified tin-mordenite[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024018

改性锡丝光沸石催化混合糖脱水制备5-羟甲基糠醛

doi: 10.19906/j.cnki.JFCT.2024018
详细信息
    通讯作者:

    E-mail: liganghg@dlut.edu.cn

  • 中图分类号: O643.36

Dehydration of sugar mixtures to 5-hydroxymethylfurfural catalyzed by modified tin-mordenite

  • 摘要: 采用酸处理脱铝补位两步法对丝光沸石(MOR)锡改性制备了系列Sn-MOR催化剂,用X射线衍射(XRD)、紫外-可见漫反射光谱(UV-vis)、氨程序升温脱附(NH3-TPD)、X射线荧光光谱(XRF)对其进行表征。结果表明,改性后催化剂仍保持丝光沸石的晶体结构,酸中心强度与酸量有改变,同时在沸石骨架中引入了锡。研究了改性丝光沸石催化单糖(葡萄糖、果糖)及混合糖生成5-羟甲基糠醛(HMF),结果表明,改性后的Sn-MOR仍保持MOR对果糖脱水为HMF的较高催化活性,同时引入的锡物种对葡萄糖具有异构化活性,因此,Sn-MOR可以同时催化葡萄糖和果糖脱水生成HMF。以商品果葡糖浆作为反应底物,在果葡糖浆质量1.94 g,催化剂用量0.3 g,反应温度170 ℃,反应时间3 h的较优反应条件下,以3.76-Sn-MOR1为催化剂,果葡糖浆转化率91.82%,HMF产率63.76%,HMF选择性69.43%;催化剂循环使用五次,仍保持了一定的催化活性,HMF产率仍有49.5%。
  • 图  1  丝光沸石(MOR)“脱Al补位”改性的机理示意图

    Figure  1  Mechanism diagram of the “De-Al-substitution” modification of MOR

    图  2  Sn-MOR样品的XRD谱图

    Figure  2  XRD patterns of Sn-MOR samples

    图  3  Sn-MOR样品的UV-vis谱图

    Figure  3  UV-vis patterns of Sn-MOR samples

    图  4  Sn-MOR样品的NH3-TPD谱图

    Figure  4  NH3-TPD curves of Sn-MOR samples

    图  5  各因素对HMF产率及选择性的影响

    Figure  5  The effect of different factors on yield and selectivity of HMF

    图  6  3.76-Sn-MOR1 重复使用性能

    Figure  6  The reuse results with 3.76-Sn-MOR1 Conditions: m(F55)= 1.94 g; m(Sn-MOR)= 0.3 g; V(sec-Butanol)= 30 mL; V(saturated salt water)= 5 mL; m(PVP)=0.06 g; t=170 ℃; t=180 min; p(N2)= 2.0 MPa.

    表  1  MOR样品的相对结晶度及元素分析

    Table  1  Relative crystallinity and element content of MOR samples

    Catalyst Relative
    crystallinity/%
    w/%
    Al2O3 SiO2 SnO2
    H-MOR 100 6.62 93.38
    3.76-Sn-MOR 86 6.61 92.14 1.13
    3.76-Sn-MOR1 105 3.82 94.88 1.29
    3.76-Sn-MOR1-Run5 72 3.77 92.74 0.83
    下载: 导出CSV

    表  2  Sn-MOR催化单糖脱水反应性能

    Table  2  The performance of Sn-MOR in the dehydration of monosaccharides

    Substrate Catalyst Temperature/℃ y/% s/% xG or xF/% Ref.
    Glucose H-MOR 150 7.08 8.56 82.74 this work
    Glucose 3.76-Sn-MOR 150 21.16 27.44 77.11 this work
    Glucose 3.76-Sn-MOR1 150 25.61 31.07 82.43 this work
    Glucose 3.76-Sn-MOR1 170 38.65 42.49 91.41 this work
    Glucose H-ZSM-5 160 24.00 25.00 96.00 [31]
    Fructose H-MOR 150 76.78 76.90 99.84 this work
    Fructose 3.76-Sn-MOR 150 73.75 73.86 99.85 this work
    Fructose 3.76-Sn-MOR1 150 70.53 70.61 99.88 this work
    Fructose 3.76-Sn-MOR1 170 69.51 69.62 99.84 this work
    Fructose H-USY 120 32.00 69.00 46.00 [32]
    Conditions: m(sub.)= 1.5 g; m(cat.)= 0.3 g; V(sec-Butanol)= 30 mL; V(saturated salt water)= 5 mL; t=180 min; m(PVP)=0.06 g; p(N2)= 2.0 MPa.
    下载: 导出CSV

    表  3  不同锡添加量的Sn-MOR催化混合糖脱水反应性能

    Table  3  The performance of Sn-MOR with different Sn additions in the dehydration of sugar mixtures

    Sn additions/% y/% s/% xT/% xG/% xF/%
    0 36.86 44.79 82.30 62.83 100.00
    1.33 44.49 50.99 87.25 75.70 97.75
    3.76 48.06 56.90 84.47 69.16 98.39
    5.00 45.75 52.05 87.90 75.44 99.22
    Conditions: m(sugar mixtures)= 1.5 g; V(sec-Butanol)= 30 mL; V(saturated salt water)= 5 mL; t=150 ℃; t=180 min; m(PVP)=0.06 g; p(N2)= 2.0 MPa.
    下载: 导出CSV

    表  4  “脱Al补Sn”的Sn-MOR催化混合糖脱水反应性能

    Table  4  The performance of Sn-MOR prepared by De-Al complementary Sn in dehydration of sugar mixtures

    HCl/(mol·L−1) y/% s/% xT/% xG/% xF/%
    0.3 46.96 55.11 85.21 70.47 98.60
    1 49.37 58.09 84.98 71.38 97.35
    2 43.69 53.48 81.69 62.65 99.00
    Conditions: m(sugar mixtures)= 1.5 g; V(sec-Butanol)= 30 mL; V(saturated salt water)= 5 mL; t=150 ℃; t=180 min; m(PVP)=0.06 g; p(N2)= 2.0 MPa.
    下载: 导出CSV

    表  5  正交试验表-L9(43

    Table  5  The table of orthogonal-L9(43)

    Entry Sugar concentration/g Mass of catalyst/g Temperature/℃ Time/h y/% s/%
    1 1 0.1 130 2 26.51 52.05
    2 1 0.3 150 3 45.45 58.03
    3 1 0.5 170 4 55.47 57.72
    4 1.5 0.1 150 4 45.34 55.95
    5 1.5 0.3 170 2 55.33 61.88
    6 1.5 0.5 130 3 44.56 56.92
    7 2 0.1 170 3 46.84 50.08
    8 2 0.3 130 4 39.34 50.27
    9 2 0.5 150 2 48.85 58.66
    下载: 导出CSV
  • [1] LI X L, ZHANG K, CHEN S Y, et al. A cobalt catalyst for reductive etherification of 5-hydroxymethyl-furfural to 2, 5-bis(methoxymethyl)furan under mild conditions[J]. Green Chem,2018,20(5):1095−1105. doi: 10.1039/C7GC03072J
    [2] YAN K, JARVIS C, GU J, et al. Production and catalytic transformation of levulinic acid: A platform for speciality chemicals and fuels[J]. Renew Sust Energ Rev,2015,51:986−997.
    [3] 张军, 李丹妮, 袁浩然等. 生物质基糠醛和5-羟甲基糠醛加氢转化研究进展[J]. 燃料化学学报,2021,49(12):1752−1767. doi: 10.1016/S1872-5813(21)60135-4

    ZHANG Jun, LI Danni, YUAN Haoran, et al. Progress in the hydroconversion of biomass-based furfural and 5-hydroxymethylfurfura[J]. J Fuel Chem Technol,2021,49(12):1752−1767. doi: 10.1016/S1872-5813(21)60135-4
    [4] 张云雷. 基于糖类生物质资源转化制备5-羟甲基糠醛的多孔催化剂设计及其催化性能与机理研究[D]. 镇江: 江苏大学, 2018.

    ZHANG Yunlei. Design of porous catalysts for the preparation of 5-hydroxymethylfurfural based on the conversion of sugar biomass resources and study of its catalytic performance and mechanism[D]. Zhenjiang: Jiangsu University, 2018.)
    [5] LIN C, WU H, WANG J, et al. Preparation of HMF from high fructose corn syrup using organic weak acid in situ as catalyst[J]. Ind Eng Chem Res,2020,59(10):4358−4366.
    [6] GODAN T K, DEVENDRA L P, ALPHY M P, et al. Catalytic synthesis of 5-hydroxymethyl furfural from sorghum syrup derived fructose[J]. Sustain Energy Techn,2022,54:102884. doi: 10.1016/j.seta.2022.102884
    [7] DE SOUZA R L, YU H, RATABOUL F, et al. 5-Hydroxymethylfurfural (5-HMF) Production from Hexoses: Limits of Heterogeneous Catalysis in Hydrothermal Conditions and Potential of Concentrated Aqueous Organic Acids as Reactive Solvent System[J]. Challenges,2012,3(2):212−232. doi: 10.3390/challe3020212
    [8] MATSUMIYA H, HARA T. Conversion of glucose into 5-hydroxymethylfurfural with boric acid in molten mixtures of choline salts and carboxylic acids[J]. Biomass Bioenergy,2015,72:227−232. doi: 10.1016/j.biombioe.2014.11.001
    [9] NGUYEN L H T, VO H T, PHAN H B, et al. Synthesis of 5-hydroxymethylfurfural from monosaccharides catalyzed by superacid VNU-11-SO4 in 1-ethyl-3-methylimidazolium chloride ionic liquid[J]. RSC Adv,2020,10(65):39687−39692. doi: 10.1039/D0RA08261A
    [10] RASRENDRA C B, SOETEDJO J N M, MAKERTIHARTHA I G B N, et al. The Catalytic Conversion of d-Glucose to 5-Hydroxymethylfurfural in DMSO Using Metal Salts[J]. Top Catal,2012,55(7-10):543−549.
    [11] WANG Y H, TONG X L, YAN Y T, et al. Efficient and selective conversion of hexose to 5-hydroxymethylfurfural with tin-zirconium-containing heterogeneous catalysts[J]. Catal Commun,2014,50:38−43.
    [12] 王建刚, 张云云, 王勇, 等. 分级有序多孔磺化碳催化果糖转化制5-羟甲基糠醛[J]. 燃料化学学报,2016,44(11):1341−1348. doi: 10.1016/S1872-5813(16)30058-5

    WANG Jiangang, ZHANG Yueyue, WANG Yong, et al. Catalytic conversion of fructose to 5-hydroxymethylfurfural by hierarchically ordered porous sulfonated carbon[J]. J Fuel Chem Technol,2016,44(11):1341−1348. doi: 10.1016/S1872-5813(16)30058-5
    [13] ZHANG Y, JIN P, MENG M, et al. Acid-Base Bifunctional Metal-Organic Frameworks: Green Synthesis and Application in One-Pot Glucose to 5-HMF Conversion[J]. Nano,2018,13(11):1850132.
    [14] TEMPELMAN C, JACOBS U, HUT T, et al. Sn exchanged acidic ion exchange resin for the stable and continuous production of 5-HMF from glucose at low temperature[J]. Appl Catal A: Gen,2019,588:117267. doi: 10.1016/j.apcata.2019.117267
    [15] YANG H, GUO Q Q, YANG P P, et al. Synthesis of hierarchical Sn-Beta zeolite and its catalytic performance in glucose conversion[J]. Catal Today,2021,367:117−123. doi: 10.1016/j.cattod.2020.06.079
    [16] ZHAO H B, HOLLADA J E, BROWN H, et al. Metal Chlorides in Ionic Liquid Solvents Convert Sugars to 5-Hydroxymethylfurfural[J]. Science,2007,316(5831):1597−1600. doi: 10.1126/science.1141199
    [17] MOLINER M, ROMÁN-LESHKOV Y, DAVIS ME. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water[J]. Proc Natl Acad Sci USA,2010,107(14):6164−6168.
    [18] GUO Q, REN L, ALHASSAN S, et al. Glucose isomerization in dioxane/water with Sn-β catalyst: improved catalyst stability and use for HMF production[J]. Chem Commun,2019,55(99):14942−14945. doi: 10.1039/C9CC07842H
    [19] NIKOLLA E, ROMAN-LESHKOY Y, MOLINER M, et al. “One-Pot” Synthesis of 5-(Hydroxymethyl)furfural from Carbohydrates using Tin-Beta Zeolite[J]. ACS Catal,2011,1(4):408−410. doi: 10.1021/cs2000544
    [20] 麻忠敏. 改性分子筛催化果糖脱水制备5-羟甲基糠醛[D]. 大连: 大连理工大学, 2023.

    MA Zhongmin. Dehydration of fructose to 5-hydroxymethylfurfural catalyzed by modified molecular sieves[D]. Dalian: Dalian University of Technology, 2023.)
    [21] LI Y P, HEAD-GORDON M, BELL A T. Analysis of the reaction mechanism and catalytic activity of metal-substituted beta zeolite for the isomerization of glucose to fructose[J]. ACS Catal,2014,4(5):1537−1545.
    [22] 张法智. 钛硅分子筛的气固相法制备、表征及其丙烯环氧化性能的研究[D]. 大连: 大连理工大学, 2000.

    ZHANG Fazhi. Preparation and characterization of titanium-silicon molecular sieves by gas-solid phase method and their propylene epoxidation properties[D]. Dalian: Dalian University of Technology, 2000.)
    [23] BAYU A, KARNJANAKOM S, KUSAKABE K, et al. Preparation of Sn-β-zeolite via immobilization of Sn/choline chloride complex for glucose-fructose isomerization reaction[J]. Chinese J Catal,2017,38(3):426−433.
    [24] 王焕英. 介孔丝光沸石的制备与表征[D]. 金华: 浙江师范大学, 2011.

    WANG Huanying. Preparation and characterization of mesoporous mordenite zeolites[D]. Jinhua: Zhejiang Normal University, 2011.)
    [25] DWYER J, KARIM K. The incorporation of heteroatoms into faujastic framework by secondary synthesis using aqueous fluoride complexes[J]. J Chem Soc, Chem Commun,1991,14(14):905−906.
    [26] GRIEKEN R V, MARTOS C, Manuel S, et al. Synthesis of Sn-silicalite from hydrothermal conversion of SiO2-SnO2 xerogels[J]. Micropor Mesopor Mater,2009,119(1):176−185.
    [27] DIJKMANS J, GABRIELS D, DUSSELIER M, et al. Productive sugar isomerization with highly active Sn in dealuminated β zeolites[J]. Green Chem,2013,15(10):2777−2785.
    [28] BAI G Y, MA Z, SHI L J, et al. An effective lactic acid-modified Hβ zeolite for synthesis of bis(indolyl)methanes[J]. Res Chem Intermediat,2012,38(9):2501−2510. doi: 10.1007/s11164-012-0567-0
    [29] ROMAN -LESHKOY Y, MOLINER M, LABINGER J A, et al. Mechanism of glucose isomerization using a solid lewis acid catalyst in water[J]. Angew Chem Int Ed,2010,49(47):8954−8957. doi: 10.1002/anie.201004689
    [30] TAARNING E, SARAVANAMURUGAN S, HOLM M S, et al. Zeolite-Catalyzed Isomerization of Triose Sugars[J]. Chemsuschem,2010,2(7):625−627.
    [31] 吴宁馨. Hf基ZSM-5催化剂催化生物质衍生糖转化制备5-羟甲基糠醛的研究[D]. 南京: 东南大学, 2021.

    WU Ningxin. Preparation of 5-hydroxymethylfurfural from biomass-derived sugar conversion catalysed by Hf-based ZSM-5 catalysts [D]. Nanjing: Southeast University, 2021.)
    [32] PANDE, ASHWINI, NIPHADKAR, et al. Acid Modified H-USY Zeolite for Efficient Catalytic Transformation of Fructose to 5-Hydroxymethyl Furfural (Biofuel Precursor) in Methyl lsobutyl Ketone-Water Biphasic System[J]. Energy Fuel,2018,32(3):3783−3791.
    [33] 李宏伟. Sn-Beta沸石的气固相法合成、表征及催化性能研究[D]. 大连: 大连理工大学, 2013.

    LI Hongwei. Gas-solid phase synthesis, characterization and catalytic properties of Sn-Beta zeolite[D]. Dalian: Dalian University of Technology, 2013.)
    [34] WOLF P, VALLA M, NUNEZ-ZARUR F, et al. Correlating synthetic methods, morphology, atomic-level structure, and catalytic activity of Sn-beta catalysts[J]. ACS Catal,2016,6(7):4047−4063.
    [35] 邱果. 碳水化合物制备5-羟甲基糠醛的固体酸催化剂制备及催化机制[D]. 北京: 北京化工大学, 2020.

    QIU Guo. Preparation and catalytic mechanism of solid acid catalysts for the preparation of 5-hydroxymethylfurfural from carbohydrates[D]. Beijin: Beijing University of Chemical Technology, 2020.)
    [36] HU Y X, LI H, HU P, et al. Probing the effects of fructose concentration on the evolution of humins during fructose dehydration[J]. React Chem Eng,2023,8(1):175−183.
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  47
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-25
  • 修回日期:  2024-03-05
  • 录用日期:  2024-03-05
  • 网络出版日期:  2024-04-29

目录

    /

    返回文章
    返回