留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧原子在θ-Fe3C不同晶面的吸附及移除机理

白亚 郑昱 李永峰 刘金家

白亚, 郑昱, 李永峰, 刘金家. 氧原子在θ-Fe3C不同晶面的吸附及移除机理[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024024
引用本文: 白亚, 郑昱, 李永峰, 刘金家. 氧原子在θ-Fe3C不同晶面的吸附及移除机理[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024024
BAI Ya, ZHENG Yu, LI Yongfeng, LIU Jinjia. Adsorption and removal mechanism of atomic oxygen on different facets of θ-Fe3C[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024024
Citation: BAI Ya, ZHENG Yu, LI Yongfeng, LIU Jinjia. Adsorption and removal mechanism of atomic oxygen on different facets of θ-Fe3C[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024024

氧原子在θ-Fe3C不同晶面的吸附及移除机理

doi: 10.19906/j.cnki.JFCT.2024024
基金项目: 山西省自然科学基金(202303021212294)资助
详细信息
    通讯作者:

    E-mail: baiya@sxie.edu.cn

    liujinjia@synfuelschina.com.cn

  • 中图分类号: O643

Adsorption and removal mechanism of atomic oxygen on different facets of θ-Fe3C

Funds: The project was supported by Natural Science Foundation of Shanxi (202303021212294).
  • 摘要: 碳化铁θ-Fe3C作为费托反应活性相之一,其氧化造成了催化剂的严重失活。探究氧原子在碳化铁晶面的吸附及移除机理有助于理解氧化过程,为提高催化剂的稳定性提供参考。本工作通过理论计算研究了低覆盖度下氧原子在θ-Fe3C不同晶面的吸附,其在(110)晶面吸附最强,(001)晶面次之,(011)晶面吸附最弱,即(110)容易氧化。原子热力学研究表明,增大H2O分压或降低温度有利于氧原子吸附,容易造成表面氧化。此外,在典型费托反应条件下(110)晶面氧原子的覆盖度最高,进一步证明该晶面易氧化,与低覆盖度吸附结果一致。对移除路径进行计算得出,(011)晶面吸附氧原子直接与CO反应以CO2方式移除能垒较低(0.84 eV);(001)与(110)晶面吸附氧原子主要通过OH歧化以H2O方式移除,但后者形成O-H键需要克服的能垒更高(1.72 vs 1.47 eV)。
  • 图  1  碳化铁θ-Fe3C各表面模型的俯视图与侧视图

    Figure  1  Schematic top and side views of the θ-Fe3C surface modelsBlue balls for Fe atoms and grey balls for C atoms.

    (a): (001); (b): (011); (c): (110).

    图  2  低覆盖度下氧原子在各晶面吸附的最稳定构型图

    Figure  2  Stable adsorption configurations of the single oxygen atom on three surfacesblue for Fe; black for C; and red for O.

    (a): (001); (b): (011); (c): (110).

    图  3  平均吸附能随氧原子数目的变化关系

    Figure  3  Average adsorption energy (Eads-ave, eV) as a function of O number (On)

    图  4  饱和覆盖度下氧原子在各晶面吸附的最稳定构型

    Figure  4  Stable adsorption configurations of atomic oxygen in the saturated state on three surfacesblue for Fe; black for C; and red for O.

    (a): (001); (b): (011); (c): (110).

    图  5  Fe3C(001)晶面氧原子吸附吉布斯自由能随(a)温度,(b)H2O与H2分压比的变化

    Figure  5  Relationship between Gibbs free energy change and (a) temperature, (b) partial pressure ratio of H2O/H2 in($p_{{\mathrm{H_2O}}}/p_{{\mathrm{H}}_2} $) at different deposited O atoms (nO) on (001)

    图  6  Fe3C各晶面氧原子吸附的热力学平衡相图

    Figure  6  Phase diagrams for the oxygen adsorption state (θ, nO/nm2, n in parentheses)

    (a): (001); (b): (011); (c): (110).

    图  7  Fe3C(001)晶面吸附氧原子移除的反应势能面图与过渡态结构的正、侧视图

    Figure  7  Energy profiles for O removal and front and side views of transition states on Fe3C(001) surface blue for Fe; black for C; red for O; and white for H.

    图  8  Fe3C(011)晶面吸附氧原子移除的反应势能面图与过渡态结构的正、侧视图

    Figure  8  Energy profiles for O removal and front and side views of transition states on Fe3C(011) surface blue for Fe; black for C; red for O; and white for H.

    图  9  Fe3C(110)晶面吸附氧原子移除的反应势能面图与过渡态结构的正、侧视图

    Figure  9  Energy profiles for O removal and front and side views of transition states on Fe3C(110) surface blue for Fe; black for C; red for O; and white for H.

    表  1  氧原子在各晶面吸附的相关信息,包括吸附个数(On)、吸附位点 (site)及逐步吸附能 (∆Eads, eV)

    Table  1  Information of O adsorption on three surfaces, including the number of adsorbed O (On), adsorption site and stepwise adsorption energy (∆Eads)

    Surface On Site Eads
    (001) 1 3F −0.94
    2 3F −0.93
    3 3F −0.89
    4 3F −0.88
    5 3F −0.39
    6 3F −0.46
    7 3F −0.26
    8 3F −0.26
    9 CTa 0.16
    (011) 1 B −0.50
    2 B −0.53
    3 B −0.52
    4 B −0.56
    5 B −0.44
    6 B −0.46
    7 B −0.46
    8 B −0.48
    9 3F 0.06
    (110) 1 3F −1.30
    2 3F −1.08
    3 3F −0.90
    4
    3F −0.35
    5 B −0.52
    6 B −0.39
    7 3F 0.00
    CT site indicates that oxygen atoms are adsorbed on the carbon atom on the surface.
    下载: 导出CSV

    表  2  Fe3C各晶面氧原子移除相关基元反应的能垒和反应能

    Table  2  The activation energy (Ea, eV) and reaction energy(Er, eV) of elementary reactions involved in the removal route

    Reactions (001) (011) (110)
    O+H→OH Ea 1.47 1.59 1.72
    Er 0.56 −0.06 0.78
    OH+H→H2O Ea 1.75 1.54 2.09
    Er 1.00 0.88 1.26
    2OH→H2O+O Ea 0.89 1.77 1.54
    Er 0.43 0.93 0.48
    CO+O→CO2 Ea 2.18 0.84 2.67
    Er 0.85 0.46 1.81
    CO+OH→COOH Ea 1.70 1.70 2.22
    Er 1.12 1.25 1.42
    COOH→CO2+H Ea 0.63 1.23 1.04
    Er −0.83 −0.73 −0.39
    下载: 导出CSV
  • [1] YANG C, ZHAO H, HOU Y, et al. Fe5C2 nanoparticles: a facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis[J]. J Am Chem Soc,2012,134(38):15814−15821. doi: 10.1021/ja305048p
    [2] NIU L, LIU X, ZHOU X, et al. Genesis of an Fe5C2@Fe3O4 core/shell structure during CO carburization of metallic iron nanoparticles[J]. J Catal,2022,407:97−103. doi: 10.1016/j.jcat.2022.01.029
    [3] CHEN Y, WEI J, DUYAR M S, et al. Carbon-based catalysts for Fischer-Tropsch synthesis[J]. Chem Soc Rev,2021,50(4):2337−2366. doi: 10.1039/D0CS00905A
    [4] PHAM T H, QI Y, YANG J, et al. Insights into Hägg iron-carbide-catalyzed Fischer-Tropsch synthesis: Suppression of CH4 formation and enhancement of C-C coupling on χ-Fe5C2(510)[J]. ACS Catal,2015,5(4):2203−2208. doi: 10.1021/cs501668g
    [5] XIONG H, JEWELL L L and COVILLE N J. Shaped carbons as supports for the catalytic conversion of syngas to clean fuels[J]. ACS Catal,2015,5(4):2640−2658. doi: 10.1021/acscatal.5b00090
    [6] LIU Z-P and HU P. A New insight into Fischer-Tropsch synthesis[J]. J Am Chem Soc,2002,124:11568−11569. doi: 10.1021/ja012759w
    [7] JANBROERS S, LOUWEN J, ZANDBERGEN H, et al. Insights into the nature of iron-based Fischer-Tropsch catalysts from quasi in situ TEM-EELS and XRD[J]. J Catal,2009,268(2):235−242. doi: 10.1016/j.jcat.2009.09.021
    [8] 温晓东, 杨勇, 相宏伟等. 费托合成铁基催化剂的设计基础: 从理论走向实践[J]. 中国科学: 化学,2017,47(11):1298−1311. doi: 10.1360/N032017-00111

    WEN Xiaodong, YANG Yong, XIANG Hongwei, et al. The design principle of iron-based catalysts for fischer-tropsch synthesis: from theory to practice[J]. Sci Sin Chim,2017,47(11):1298−1311. doi: 10.1360/N032017-00111
    [9] BARRIOS A J, GU B, LUO Y, et al. Identification of efficient promoters and selectivity trends in high temperature Fischer-Tropsch synthesis over supported iron catalysts[J]. Appl Catal B: Environ,2020,273:119028. doi: 10.1016/j.apcatb.2020.119028
    [10] TANG L, HE L, WANG Y, et al. Selective fabrication of χ-Fe5C2 by interfering surface reactions as a highly efficient and stable Fischer-Tropsch synthesis catalyst[J]. Appl Catal B: Environ,2021,284:119753−119762. doi: 10.1016/j.apcatb.2020.119753
    [11] CHEN B, WANG D, DUAN X, et al. Charge-tuned CO activation over a χ-Fe5C2 Fischer-Tropsch catalyst[J]. ACS Catal,2018,8:2709−2714. doi: 10.1021/acscatal.7b04370
    [12] LU F, CHEN X, LEI Z, et al. Revealing the activity of different iron carbides for Fischer-Tropsch synthesis[J]. Appl Catal B: Environ,2021,281:119521−119531. doi: 10.1016/j.apcatb.2020.119521
    [13] OPEYEMI OTUN K, YAO Y, LIU X, et al. Synthesis, structure, and performance of carbide phases in Fischer-Tropsch synthesis: A critical review[J]. Fuel,2021,296:120689-. doi: 10.1016/j.fuel.2021.120689
    [14] DE SMIT E, CINQUINI F, BEALE A M, et al. Stability and reactivity of ϵ-χ-ϴ iron carbide catalyst phases in Fischer-Tropsch synthesis: Controlling μc[J]. J Am Chem Soc,2010,132(42):14928−14941. doi: 10.1021/ja105853q
    [15] ZHANG M, REN J and YU Y. Insights into the hydrogen coverage effect and the mechanism of Fischer-Tropsch to olefins process on Fe5C2(510)[J]. ACS Catal,2019,10(1):689−701.
    [16] 何富贵, 张曈, 梁洁等. DFT计算在铁基催化剂费托合成反应研究中的应用[J]. 燃料化学学报, 2023, 51 (11) : 1540-1564.

    HE Fugui, ZHANG Tong, LIANG Jie, et al. Application of DFT calculation in the study of iron-based catalyst for Fischer-Tropsch synthesis[J]. J Fuel Chem Technol, 2023, 51 (11) : 1540-1564.)
    [17] TU W, SUN C, ZHANG Z, et al. Chemical and structural properties of Na decorated Fe5C2-ZnO catalysts during hydrogenation of CO2 to linear α-olefins[J]. Appl Catal B: Environ,2021,298:120567−120578. doi: 10.1016/j.apcatb.2021.120567
    [18] WANG J, CAO M, XU F, et al. A cage compound precursor-derived Sb/Sb2O4/Fe3C nanocomposite anchored on reduced graphene oxide as an anode for potassium ion batteries[J]. New J Chem,2021,45(2):993−1000. doi: 10.1039/D0NJ05160H
    [19] ZHANG C, CAO C, ZHANG Y, et al. Unraveling the role of zinc on bimetallic Fe5C2-ZnO catalysts for highly selective carbon dioxide hydrogenation to high carbon α-olefins[J]. ACS Catal,2021,11(4):2121−2133. doi: 10.1021/acscatal.0c04627
    [20] ZHANG Z, YIN H, YU G, et al. Selective hydrogenation of CO2 and CO into olefins over sodium- and zinc-promoted iron carbide catalysts[J]. J Catal,2021,395:350−361. doi: 10.1016/j.jcat.2021.01.036
    [21] ZHAO X Q, LIU B X, LIANG Y, et al. Oxidation behavior and magnetic properties of metallic ultrafine particles[J]. J Magn Magn Mater,1996,164:401−410. doi: 10.1016/S0304-8853(96)00457-X
    [22] DE SMIT E, WECKHUYSEN B M. The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour[J]. Chem Soc Rev,2008,37(12):2758−2781. doi: 10.1039/b805427d
    [23] CALVIN H. BARTHOLOMEW, MATTHEW W. STOKER, LINDA MANSKER, et al. Effects of pretreatment, reaction, and promoter on microphase structure and Fischer-Tropsch activity of precipitated iron catalysts[J]. Stud Surf Sci Catal,1999,126:265−272.
    [24] ROBERT J. GORMLEY, MICHAEL F. ZAROCHAK, PAUL W. DEFFENBAUGH, et al. Effect of initial wax medium on the Fischer-Tropsch slurry reaction[J]. Appl Catal A,1997,161:263−279. doi: 10.1016/S0926-860X(97)00077-X
    [25] CLAEYS M, VAN STEEN E, BOTHA T, et al. Oxidation of Hägg carbide during high-temperature Fischer–Tropsch synthesis: size-dependent thermodynamics and in situ observations[J]. ACS Catal,2021,11(22):13866−13879. doi: 10.1021/acscatal.1c03719
    [26] ZHAO X Q, LIANG Y, HU Z Q, et al. Oxidation characteristics and magnetic properties of iron carbide and iron ultrafine particles[J]. J Appl Phys,1996,80(10):5857−5860. doi: 10.1063/1.363570
    [27] THüNE P, MOODLEY P, SCHEIJEN F, et al. The effect of water on the stability of iron oxide and iron carbide nanoparticles in hydrogen and syngas followed by in situ X-ray absorption spectroscopy[J]. J Phys Chem C,2012,116(13):7367−7373. doi: 10.1021/jp210754k
    [28] KRISHNAMOORTHY S, LI A, IGLESIA E. Pathways for CO2 formation and conversion during Fishcher-Tropsch synthesis on iron-based catalysts[J]. Catal Lett,2002,80:77−86. doi: 10.1023/A:1015382811877
    [29] CAO D-B, LI Y-W, WANG J, et al. Chain growth mechanism of Fischer-Tropsch synthesis on Fe5C2(001)[J]. J Mol Catal A,2011,346(1-2):55−69. doi: 10.1016/j.molcata.2011.06.009
    [30] BING LIU, WENPING LI, JIAO ZHENG, et al. CO2 formation mechanism in Fischer-Tropsch synthesis over iron-based catalysts: A combined experimental and theoretical study[J]. Catal Sci Technol,2018,8:5288−5301. doi: 10.1039/C8CY01621F
    [31] BAI Y, LIU J, WANG T, et al. Theoretical study about adsorbed oxygen reduction over χ-Fe5C2: formation of H2O and CO2[J]. Mol Catal,2022,524:112236−112242. doi: 10.1016/j.mcat.2022.112236
    [32] KRESSE G and FURTHMIILLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput Mater Sci,1996,6(1):15−50. doi: 10.1016/0927-0256(96)00008-0
    [33] KRESSE G and FURTHMULLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B,1996,54(16):11169−11186. doi: 10.1103/PhysRevB.54.11169
    [34] BLOCHL P E. Projector augmented-wave method[J]. Phys Rev B Condens Matter,1994,50(24):17953−17979. doi: 10.1103/PhysRevB.50.17953
    [35] KRESSE G and JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys Rev B,1999,59(3):1758−1775. doi: 10.1103/PhysRevB.59.1758
    [36] PERDEW J P, BURKE K and ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett,1996,77(18):3865−3868. doi: 10.1103/PhysRevLett.77.3865
    [37] METHFESSEL M and PAXTON A T. High-precision sampling for Brillouin-zone integration in metals[J]. Phys Rev B Condens Matter,1989,40(6):3616−3621. doi: 10.1103/PhysRevB.40.3616
    [38] HENKELMAN G and JóNSSON H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points[J]. J Chem Phys,2000,113(22):9978−9985. doi: 10.1063/1.1323224
    [39] HENKELMAN G, UBERUAGA B P, JóNSSON H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. J Chem Phys,2000,113(22):9901−9904. doi: 10.1063/1.1329672
    [40] SHEPPARD D, TERRELL R, HENKELMAN G. Optimization methods for finding minimum energy paths[J]. J Chem Phys,2008,128(13):134106. doi: 10.1063/1.2841941
    [41] HENKELMAN G, JóNSSON H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives[J]. J Chem Phys,1999,111(15):7010−7022. doi: 10.1063/1.480097
    [42] REUTER K, SCHEFFLER M. First-principles atomistic thermodynamics for oxidation catalysis: surface phase diagrams and catalytically interesting regions[J]. Phys Rev Lett,2003,90(4):46103−46106. doi: 10.1103/PhysRevLett.90.046103
    [43] REUTER K, SCHEFFLER M. Composition, structure, and stability of RuO2(110) as a function of oxygen pressure[J]. Phys Rev B,2001,65(3):35406−35416. doi: 10.1103/PhysRevB.65.035406
    [44] WANG T, TIAN X-X, LI Y-W, et al. Coverage-dependent CO adsorption and dissociation mechanisms on iron surfaces from DFT computations[J]. ACS Catal,2014,4(6):1991−2005. doi: 10.1021/cs500287r
    [45] HUO C-F, LI Y-W, WANG J, et al. Adsorption and dissociation of CO as well as CHx coupling and hydrogenation on the clean and oxygen pre-covered Co(0001) surfaces[J]. J Phys Chem C,2008,112:3840−3848. doi: 10.1021/jp710566t
    [46] WANG P, CHEN W, CHIANG F-K, et al. Synthesis of stable and low-CO2 selective epsilon-iron carbide Fischer-Tropsch catalysts[J]. Sci Adv,2018,4:2947−2953. doi: 10.1126/sciadv.aau2947
    [47] WANG T, WANG S, LI Y-W, et al. Adsorption equilibria of CO coverage on β-Mo2C surfaces[J]. J Phys Chem C,2012,116(10):6340−6348. doi: 10.1021/jp300422g
    [48] https://janaf.nist.gov/.
    [49] CHIOU W. Structure and stability of Fe3C-cementite surfaces from first principles[J]. Surf Sci,2003,530(1-2):88−100. doi: 10.1016/S0039-6028(03)00352-2
    [50] ZHAO S, LIU X-W, HUO C-F, et al. Determining surface structure and stability of ε-Fe2C, χ-Fe5C2, θ-Fe3C and Fe4C phases under carburization environment from combined DFT and atomistic thermodynamic studies[J]. Catal Struct React,2014,1(1):44−60.
    [51] BAI Y, LIU J, REN P, et al. Oxygen adsorption-induced morphological evolution of Hägg iron carbide at high oxygen chemical potentials[J]. J Phys Chem C,2021,125(5):3055−3065. doi: 10.1021/acs.jpcc.0c10822
    [52] GAO W, GAO R, ZHAO Y, et al. Photo-driven syngas conversion to lower olefins over oxygen-decorated Fe5C2 Catalyst[J]. Chem,2018,4(12):2917−2928. doi: 10.1016/j.chempr.2018.09.017
    [53] LIU S, TIAN X, WANG T, et al. Coverage dependent water dissociative adsorption on Fe(110) from DFT computation[J]. Phys Chem Chem Phys,2015,17(14):8811−21. doi: 10.1039/C5CP00044K
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  47
  • HTML全文浏览量:  24
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-07
  • 修回日期:  2024-05-09
  • 录用日期:  2024-05-09
  • 网络出版日期:  2024-06-05

目录

    /

    返回文章
    返回