留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于化学链的氮转化与利用的研究进展

武婕 刘大伟 马晓迅 徐龙

武婕, 刘大伟, 马晓迅, 徐龙. 基于化学链的氮转化与利用的研究进展[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024025
引用本文: 武婕, 刘大伟, 马晓迅, 徐龙. 基于化学链的氮转化与利用的研究进展[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024025
WU Jie, LIU Dawei, MA Xiaoxun, XU Long. Research progress on the transformation and utilization of nitrogen element based on chemical looping[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024025
Citation: WU Jie, LIU Dawei, MA Xiaoxun, XU Long. Research progress on the transformation and utilization of nitrogen element based on chemical looping[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024025

基于化学链的氮转化与利用的研究进展

doi: 10.19906/j.cnki.JFCT.2024025
基金项目: 陕西省创新能力支撑计划(2024RS-CXTD-53),陕西省重点研发计划(2022QCY-LL-69,2023-YBGY-313),西安市科技计划(22GXFW0132),咸阳市科技计划(2021ZDYF-NY-0017)和榆林市科技计划(CXY-2021-129)资助
详细信息
    通讯作者:

    E-mail:longxuxulong@163.com

  • 中图分类号: TK114; TQ519;O6-1

Research progress on the transformation and utilization of nitrogen element based on chemical looping

Funds: The project was supported by Shaanxi Provincial Innovation Ability Support Program (2024RS-CXTD-53), the Key R&D Program of Shaanxi Province (2022QCY-LL-69, 2023-YBGY-313), Xi’an Science and Technology Project (22GXFW0132), Xianyang Science and Technology Project (2021ZDYF-NY-0017), Yulin Science and Technology Project (CXY-2021-129).
  • 摘要: “双碳”背景下,氮或将成为取代碳的重要元素,可完成无碳燃料氨以及其他化合物的生产。其中,氨不仅是重要的化工原料,更是良好的能源载体。化学链技术通过重新设计反应路径,将过程分解为不同空间或时间内进行的两个或多个子反应,通过载体介质的反应和再生在耦合系统中实现物质和能量传递。作为一种新兴的清洁、有效能源转化手段,化学链技术近年来得到了广泛的关注。基于此,本工作对化学链技术在含氮化合物合成与转化领域中的研究进行综述,概述了以Haber-Bosch工艺为基础的多相催化和光、电等外场力驱动的化学链合成氨工艺的新发展,并对其进行总结和讨论。在含氮化合物合成方面,介绍了化学链技术用于氨氧化制一氧化氮以及烷基硝酸酯为关键中间体的烷烃化学链制醇类物质的过程。最后对基于化学链的氮转化与利用面临的挑战进行了分析和讨论,以期为今后化学链制含氮化学品提供参考。
  • 图  1  化学链合成氨示意图

    Figure  1  Schematic diagram of ammonia synthesis by chemical looping

    图  2  金属氮化物为载氮体的化学链合成氨的反应热力学图[53]

    Figure  2  Thermodynamic diagram of the reaction of a metal nitride as a chemical looping of nitrogen carriers for the synthesis of ammonia[53] (with permission from Springer Nature)

    图  3  基于生物质气化耦合Ca-Cu化学链合成氨系统[63]

    Figure  3  Ammonia synthesis system based on biomass gasification coupled with Ca-Cu chemical looping [63] (with permission from ACS Publications)

    图  4  Li2NH介导的电驱动化学链合成氨[71]

    Figure  4  Li2NH-mediated electrodrive chemical looping synthesis of ammonia [71] (with permission from ACS Publications)

    图  5  用于化学链实验的反应室和旋转光谱仪示意图[73]

    Figure  5  Schematic of the reaction chamber and rotational spectrometer used for chemical looping experiments [73] (with permission from ACS Publications)

    图  6  各种元素氮化物在化学链合成氨过程中的研究程度

    Figure  6  The degree to which nitrides of various elements are studied in the process of ammonia synthesis in the chemical looping

    图  7  V2O5作为催化剂的化学链氨氧化制NO的反应机理图[112]

    Figure  7  Reaction mechanism diagram of the chemical looping of V2O5 as a catalyst for ammonia oxidation to NO[112] (with permission from Springer Nature)

    图  8  光驱动化学链制甲醇示意图[119]

    Figure  8  Schematic diagram of light-driven chemical looping to methanol[119] (with permission from ACS Publications)

    表  1  载氮体的常见制备方法

    Table  1  Common preparation methods for nitrogen carriers

    Method Advantages Disadvantages Ref.
    co-precipitation
    method
    the operation is simple, the cost is low, the prepared nitrogen carrier material has high hardness, uniform components, and dense powder the addition of precipitant may lead to high local concentrations and agglomeration [29]
    one-step
    pyrolysis method
    easy to operate, low preparation temperature and short time-consuming the surface of the hydrogenated nitrogen carrier is rough and cracks appear [3033]
    mechanical
    mixing method
    simple to operate and easy to control poor uniformity and easy agglomeration [34,35]
    immersion
    method
    the operation is simple, easy to control, and the active component has a high atomic utilization the preparation time is long, the uniformity is poor, and it is not suitable for industrial production [34,36,37]
    sol-gel method the prepared sample has a high specific surface area, controllable microstructure and good uniformity the cost of raw materials is high and the preparation time is long [38]
    molten salt
    synthesis method
    the operation is simple, the preparation temperature is low, the uniformity is good, and the product purity is high the scope of application is small, the molten salt is toxic, and special equipment is required (PTFE lined steel reactor with nitrogen-filled glove box, etc.) [39]
    下载: 导出CSV

    表  2  典型载氮体介导的化学链合成氨过程总结

    Table  2  Summary of ammonia synthesis processes with typical nitrogen-loaded mediated chemical looping

    Nitrogen Carrier Nitrogen Carrier Type Hydrogen Source Drive Type Reaction Conditions Reaction Rate
    (Efficiency)
    Ref.
    Ca3N2 Ionic
    Nitride
    H2 Thermally
    Driven
    N Fixation:700 ℃
    Hydrogenation:550 ℃,1×105 Pa
    98 μmol/(g∙h) [52]
    CrN Transition Metal Nitride H2 Thermally
    Driven
    N Fixation:750 ℃
    Hydrogenation:700 ℃,1×105 Pa
    83.55 μmol/(g∙h) [36]
    Co-CrN Transition Metal Nitride H2 Thermally
    Driven
    As Above 818.2 μmol/(g∙h) [36]
    Mo2N Transition Metal Nitride H2 Thermally
    Driven
    N Fixation:600 ℃
    Hydrogenation:450 ℃,1×105 Pa
    4576 μmol/(g∙h) [32]
    BaNH Ionic
    Nitride
    H2 Thermally
    Driven
    N Fixation & Hydrogenation:
    300 ℃,1×105 Pa
    198 μmol/(g∙h) [66]
    Ni-BaNH Ionic
    Nitride
    H2 Thermally
    Driven
    As Above 3125 μmol/(g∙h) [66]
    Li2NH Ionic
    Nitride
    H2 Thermoelectric
    Coupling
    Molten Salt Electrolytic Cell:
    2V,400 ℃,1×105 Pa
    64 μmol/(g∙h) [71]
    Li3N Ionic
    Nitride
    H2O Thermoelectric
    Coupling
    Electrolysis:
    3V,450 ℃,1×105 Pa
    N Fixation & Hydrolysis:
    100 ℃,1×105 Pa
    88.5%
    (initial current efficiency)
    [48]
    Mg3N2 Ionic
    Nitride
    H2O Photothermal
    Coupling
    N Fixation:1×105 Pa
    Reduction & Hydrolysis:
    <100 mTorr
    Light Source Heating
    1.67 μmol/(g∙h) [73]
    Mn5N2 Transition Metal Nitride H2O Thermally
    Driven
    Hydrolysis:
    500 ℃,1×105 Pa
    N Fixation:
    1150 ℃,1×105 Pa
    54%,2 h
    (the percentage of lattice nitrogen converted to ammonia)
    [77]
    CrN Transition Metal Nitride H2O Thermally
    Driven
    Reduction:
    1200~1500 ℃,1×105 Pa
    N Fixation & Hydrolysis:
    1000 ℃,1×105 Pa
    108 μmol/(g∙h) [78]
    AlN Covalent Metal Nitride H2O Thermally
    Driven
    N Fixation:
    1500~1700 ℃,1×105 Pa
    Hydrolysis:
    1000 ℃,1×105 Pa
    88%,1 h
    (the percentage of lattice nitrogen converted to ammonia)
    [81]
    下载: 导出CSV
  • [1] SANTI C, BOGUSZ D, FRANCHE C. Biological nitrogen fixation in non-legume plants[J]. Ann. Bot,2013,111(5):743−767. doi: 10.1093/aob/mct048
    [2] 迟静娴, 徐方继, 刘译阳, 等. 豆科植物结瘤固氮及其分子调控机制的研究进展[J]. 山东农业科学,2022,54(3):155−164.

    CHI Jingxian, XU Fangji, LIU Yiyang, et al. Progress in research on nodulation, nitrogen fixation and molecular regulation mechanism in leguminosae[J]. Shandong Agric Sci,2022,54(3):155−164.
    [3] MUS F, CROOK M B, GARCIA K, et al. Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes[J]. Appl Environ Microbiol,2016,82(13):3698−3710. doi: 10.1128/AEM.01055-16
    [4] HILL R D, RINKER R G, WILSON H D. Atmospheric nitrogen fixation by lightning[J]. Atoms Sci,1980,37:179−192. doi: 10.1175/1520-0469(1980)037<0179:ANFBL>2.0.CO;2
    [5] BARTH P, STUNKEN E E, HELLING C, et al. Isotopic constraints on lightning as a source of fixed nitrogen in Earth’s early biosphere[J]. Nat Geosci,2023,16(6):478−484. doi: 10.1038/s41561-023-01187-2
    [6] AROSKAY A, MARTIN E, BEKKI S, et al. Geological evidence of extensive N-fixation by volcanic lightning during very large explosive eruptions[J]. Proc Natl Acad Sci USA,2024,121(7):e2309131121. doi: 10.1073/pnas.2309131121
    [7] ERISMAN J W, SUTTON M A, GALLOWAY J, et al. How a century of ammonia synthesis changed the world[J]. Nat. Geosci,2008,1:636−639. doi: 10.1038/ngeo325
    [8] MA J B, LIN S, LIN Z Q, et al. Recent advances in solar photo(electro)catalytic nitrogen fixation[J]. Journal of Electrochemistry,2024,30(3):4−26.
    [9] VALERA-MEDINA A, AMER-HATEM F, AZAD A K, et al. Review on ammonia as a potential fuel: from synthesis to economics[J]. Energy Fuels,2021,35(9):6964−7029. doi: 10.1021/acs.energyfuels.0c03685
    [10] SCHüTH F, PALKOVITS R, SCHLöGL R, et al. Ammonia as a possible element in an energy infrastructure: catalysts for ammonia decomposition[J]. Energy Environ Sci,2012,5(4):6278−6289. doi: 10.1039/C2EE02865D
    [11] LITTLE D J, SMITH I I I M R, HAMANN T W. Electrolysis of liquid ammonia for hydrogen generation[J]. Energy Environ Sci,2015,8(9):2775−2781. doi: 10.1039/C5EE01840D
    [12] CESARO Z, IVES M, NAYAK-LUKE R, et al. Ammonia to power: Forecasting the levelized cost of electricity from green ammonia in large-scale power plants [J]. Appl Energy, 2021, 282-296.
    [13] 刘化章. 合成氨工业: 过去、现在和未来——合成氨工业创立100周年回顾、启迪和挑战[J]. 化工进展,2013,32(9):1995−2005.

    LIU Huazhang. Ammonia synthesis industry: Past, present and future–Retrospect, enlightenment and challenge from 100 years of ammonia synthesis industry[J]. Chem Ind Eng Prog,2013,32(9):1995−2005.
    [14] JIANG L, FU X. An ammonia–hydrogen energy roadmap for carbon neutrality: opportunity and challenges in China[J]. Engineering,2021,7(12):1688−1691. doi: 10.1016/j.eng.2021.11.004
    [15] GUO J, CHEN P. Catalyst: NH3 as an energy carrier[J]. Chem,2017,3(5):709−712. doi: 10.1016/j.chempr.2017.10.004
    [16] SMITH C, HILL A K, TORRENTE-MURCIANO L. Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape[J]. Energy Environ Sci,2020,13(2):331−344. doi: 10.1039/C9EE02873K
    [17] GIDDEY S, BADWAL S P S, MUNNINGS C, et al. Ammonia as a renewable energy transportation media[J]. Acs Sustain Chem Eng,2017,5(11):10231−10239. doi: 10.1021/acssuschemeng.7b02219
    [18] SUSHKEVICH V L, PALAGIN D, RANOCCHIARI M, et al. Selective anaerobic oxidation of methane enables direct synthesis of methanol[J]. Methane Chem,2017,356(5):523−527.
    [19] HARIBAL V P, NEAL L M, LI F. Oxidative dehydrogenation of ethane under a cyclic redox scheme – Process simulations and analysis[J]. Energy,2017,119:1024−1035. doi: 10.1016/j.energy.2016.11.039
    [20] DAMASCENO S, TRINDADE F J, FONSECA F C, et al. Oxidative coupling of methane in chemical looping design[J]. Fuel Process Technol,2022,231:107255. doi: 10.1016/j.fuproc.2022.107255
    [21] SUN W, ZHAO G, GAO Y, et al. An oxygen carrier catalyst toward efficient chemical looping-oxidative coupling of methane [J]. Appl Catal B: Environ, 2022, 304.
    [22] 李婉莹, 陈良勇. 化学链甲烷氧化偶联界面反应路径和晶格氧传递的分子动力学模拟[J]. 燃料化学学报(中英文),2024,52:1−11.

    LI Wanying, CHEN Liangyong. Surface reaction and lattice oxygen transfer in chemical looping oxidative coupling of methane: molecular dynamics simulations[J]. J Fuel Chem Technol,2024,52:1−11.
    [23] GABRA S, MAREK E J, POULSTON S, et al. The use of strontium ferrite perovskite as an oxygen carrier in the chemical looping epoxidation of ethylene [J]. Appl Catal B: Environ, 2021, 286.
    [24] 陈庆明, 刘大伟, 吕随明, 等. 面向CH4-CO2重整反应的生物质炭基催化剂载体制备工艺的研究进展[J]. 燃料化学学报(中英文),2023,51(3):273−292. doi: 10.1016/S1872-5813(22)60038-0

    CHEN Qingming, LIU Dawei, LÜ Suiming, et al. Research progress on the preparation process of biochar-based catalyst support for dry reforming of methane[J]. J Fuel Chem Technol,2023,51(3):273−292. doi: 10.1016/S1872-5813(22)60038-0
    [25] ZHANG W, ZHANG L, PEI S, et al. Rational design and reduction kinetics of efficient Ce-Co oxygen carriers for chemical looping reforming of methane[J]. Fuel,2023,345:128208. doi: 10.1016/j.fuel.2023.128208
    [26] RAO Q, ZHANG J R, YANG T L, et al. A nickel-modified perovskite-supported iron oxide oxygen carrier for chemical looping dry reforming of methane for syngas production[J]. Chem Eng J,2024,485:150033. doi: 10.1016/j.cej.2024.150033
    [27] KIM S, ANNAMALAI L, LOBO R F. Silica-encapsulated Fe2O3 oxygen carriers for selective chemical looping combustion of hydrogen [J]. Chem Eng J, 2023, 455.
    [28] JENNINGS J R . Catalytic ammonia synthesis: fundamentals and practice[M]. New York, Plenum Press, 1991.
    [29] LAASSIRI S, ZEINALIPOUR-YAZDI C D, BION N, et al. Combination of theoretical and in situ experimental investigations of the role of lithium dopant in manganese nitride: a two-stage reagent for ammonia synthesis[J]. Faraday Discuss,2021,229:281−296. doi: 10.1039/C9FD00131J
    [30] 张谭. 钼基载氮体涉及的化学链合成氨反应特性研究 [D]. 太原: 太原理工大学, 2022.

    ZHANG Tan. Study on reaction characteristics of ammonia synthesis by chemical looping of molybdenum based nitrogen carriers [D]. Taiyuan: Taiyuan University of Technology, 2022.)
    [31] 杨颂, 张谭, 余钟亮, 等. 一种适用于化学链合成氨的负载型钼基载氮体及其制备方法: CN114618557A[P]. 2022-06-14.

    YANG Song, ZHANG Tan, YU Zhongliang, et al. A supported molybdenum based nitrogen carrier suitable for chemical looping synthesis of ammonia and its preparation method: CN114618557A[P]. 2022-06-14.)
    [32] YANG S, ZHANG T, YANG Y, et al. Molybdenum-based nitrogen carrier for ammonia production via a chemical looping route [J]. Appl Catal B: Environ, 2022, 312.
    [33] 张谭, 余钟亮, 余嘉琪, 等. 基于高性能负载型钼基载氮体的化学链合成氨性能研究[J]. 化学学报,2022,80(6):788−796. doi: 10.6023/A22010057

    ZHANG Tan, YU Zhongliang, YU Jiaqi, et al. Chemical looping ammonia synthesis with high performance supported molybdenum-based nitrogen carrier[J]. Acta Chim Sinica,2022,80(6):788−796. doi: 10.6023/A22010057
    [34] 吴烨, 张权, 刘岩, 等. 适用于煤化学链制氨中的催化载氮体及其制备方法: CN110711593A[P]. 2020-01-21.

    WU Ye, ZHANG Quan, LIU Yan, et al. Catalytic nitrogen carrier and its preparation method suitable for coal chemical looping ammonia production: CN110711593A[P]. 2020-01-21.)
    [35] WANG B, YIN X, WANG P, et al. Chemical looping ammonia synthesis at atmospheric pressure benefiting from synergistic effect of Mn- and Fe-based nitrogen carriers[J]. Int J Hydrogen Energy,2023,48(7):2705−2717. doi: 10.1016/j.ijhydene.2022.10.132
    [36] WANG S, GONG F, ZHOU Q, et al. Transition metal enhanced chromium nitride as composite nitrogen carrier for sustainable chemical looping ammonia synthesis [J]. Appl Catal B: Environ, 2023, 339.
    [37] CUI B, YU Z, LIU S, et al. Highly selective and efficient ammonia synthesis from N2 and H2O via an iron-based electrolytic-chemical cycle[J]. Int J Hydrogen Energy,2020,45(1):94−102. doi: 10.1016/j.ijhydene.2019.10.144
    [38] SUN Z, LI K, TOAN S, et al. Ammonia synthesis via chromium-based nitrogen carrier looping [J]. Chem Eng J, 2023, 476.
    [39] LAASSIRI S, ZEINALIPOUR-YAZDI C D, CATLOW C R A, et al. The potential of manganese nitride based materials as nitrogen transfer reagents for nitrogen chemical looping[J]. Appl Catal B: Environ,2018,223:60−66. doi: 10.1016/j.apcatb.2017.04.073
    [40] ASLAM S, RANI S, LAL K, et al. Electrochemical hydrogen production: sustainable hydrogen economy[J]. Green Chem,2023,25:9543−9573. doi: 10.1039/D3GC02849F
    [41] 蒋灶, 徐龙君, 刘成伦. Ni-MOF/Zn0.5Cd0.5S合成及其光催化废水制氢研究[J]. 燃料化学学报(中英文),2024,52(1):97−104.

    JIANG Zao, XU Longjun, LIU Chenglun. Synthesis of Ni-MOF/Zn0.5Cd0.5S and the photocatalytic hydrogen production performance from wastewater[J]. J Fuel Chem Technol,2024,52(1):97−104.
    [42] SCHEFFE J R, HAUSSENER S, PATZKE G R. Solar hydrogen production[J]. Energy Technol,2022,10(1):2101021 doi: 10.1002/ente.202101021
    [43] WANG H X, XU J L, SHENG L X, et al. A review on bio-hydrogen production technology[J]. Energy Res,2018,42(11):3442−3453. doi: 10.1002/er.4044
    [44] GHAZVINI M, SADEGHZADEH M, AHMADI M H, et al. Geothermal energy use in hydrogen production: A review[J]. Energy Res,2019,43(14):7823−7851.
    [45] PACHAPUR V L, SARMA S J, BRAR S K, et al. Energy balance of hydrogen production from wastes of biodiesel production[J]. Biofuels,2015,9(2):129−138.
    [46] ZHOU L, LI X, LI Q, et al. Advances in nitrogen carriers for chemical looping processes for sustainable and carbon-free ammonia synthesis[J]. ACS Catal,2023,13(22):15087−15106. doi: 10.1021/acscatal.3c03717
    [47] JAIN A, MIYAOKA H, KUMAR S, et al. A new synthesis route of ammonia production through hydrolysis of metal – Nitrides[J]. Int J Hydrogen Energy,2017,42(39):24897−24903. doi: 10.1016/j.ijhydene.2017.08.027
    [48] MCENANEY J M, SINGH A R, SCHWALBE J A, et al. Ammonia synthesis from N2 and H2O using a lithium cycling electrification strategy at atmospheric pressure[J]. Energy Environ Sci,2017,10(7):1621−1630. doi: 10.1039/C7EE01126A
    [49] GOSHOME K, MIYAOKA H, YAMAMOTO H, et al. Ammonia synthesis via non-equilibrium reaction of lithium nitride in hydrogen flow condition[J]. Mater Trans,2015,56(3):410−414. doi: 10.2320/matertrans.M2014382
    [50] YAMAGUCHI S, ICHIKAWA T, WANG Y, et al. Nitrogen dissociation via reaction with lithium alloys[J]. ACS Omega,2017,2(3):1081−1088. doi: 10.1021/acsomega.6b00498
    [51] YAMAGUCHI T, SHINZATO K, YAMAMOTO K, et al. Pseudo catalytic ammonia synthesis by lithium–tin alloy[J]. Int J Hydrogen Energy,2020,45(11):6806−6812. doi: 10.1016/j.ijhydene.2019.12.190
    [52] MICHALSKY R, AVRAM A M, PETERSON B A, et al. Chemical looping of metal nitride catalysts: low-pressure ammonia synthesis for energy storage[J]. Chem Sci,2015,6(7):3965−3974. doi: 10.1039/C5SC00789E
    [53] GAO W, WANG R, FENG S, et al. Thermodynamic and kinetic considerations of nitrogen carriers for chemical looping ammonia synthesis [J]. Discov Chem Eng, 2023, 3(1).
    [54] CHANG F, GUAN Y, CHANG X, et al. Alkali and alkaline earch hydrides-driven N2 activation and transformation over Mn nitride catalyst[J]. J Am Chem Soc,2018,140(44):14799−14806. doi: 10.1021/jacs.8b08334
    [55] ZHONG Y, XIA X H, SHI F, et al. Transition metal carbides and nitrides in energy storage and conversion[J]. Adv Sci, 2016, 3(5).
    [56] 巩宙婷, 张谭, 李娜, 等. 化学链合成氨中载氮体的设计与应用研究进展[J]. 燃料化学学报(中英文),2023,52(4):512−524.

    GONG Zhouting, ZHANG Tan, LI Na, et al. Progress in design and application research of nitrogen carrier in chemical looping ammonia synthesis technology[J]. J Fuel Chem Technol,2023,52(4):512−524.
    [57] AFRAMEHR W M, HUANG C, PFROMM P H. Chemical looping of manganese to synthesize ammonia at atmospheric pressure: sodium as promoter[J]. Chem Eng Technol,2020,43(10):2126−2133. doi: 10.1002/ceat.202000154
    [58] KOJIMA R, AIKA K I. Cobalt molybdenum bimetallic nitride catalysts for ammonia synthesis: Part 1. Preparation and characterization[J]. Appl Catal A-gen,2001,215:149−160. doi: 10.1016/S0926-860X(01)00529-4
    [59] HUNTER S M, MCKAY D, SMITH R I, et al. Topotactic nitrogen transfer: structural transformation in cobalt molybdenum nitrides[J]. Chem Mater,2010,22:2898−2907. doi: 10.1021/cm100208a
    [60] NGUYEN N P, KAUR S, BUSH H E, et al. Two‐Step Chemical looping cycle for renewable NH3 production based on non‐catalytic Co3Mo3N/Co6Mo6N reactions [J]. Adv Energy Mater, 2023, 14(7).
    [61] BROWN S, ROBINSON B, WANG Y, et al. Microwave heated chemical looping ammonia synthesis over Fe and CoMo particles[J]. J Mater Chem A,2022,10(29):15497−15507. doi: 10.1039/D2TA03241D
    [62] HUA J, WANG K, WANG Q, et al. Feasibility of Fe-based nitrogen carrier for chemical looping ammonia synthesis: thermodynamics[J]. J Therm Anal Calorim,2020,146(2):673−680.
    [63] TANG J, KANG L, LIU Y. Design and optimization of a clean ammonia synthesis system based on biomass gasification coupled with a Ca–Cu chemical loop[J]. Ind Eng Chem Res,2022,61(23):8128−8140. doi: 10.1021/acs.iecr.2c00616
    [64] ALEXANDER A M, HARGREAVES J S J, MITCHELL C. The reduction of various nitrides under hydrogen: Ni3N, Cu3N, Zn3N2 and Ta3N5[J]. Top Catal,2012,55(14-15):1046−1053. doi: 10.1007/s11244-012-9890-3
    [65] LAASSIRI S, ZEINALIPOUR-YAZDI C D, CATLOW C R A, et al. Nitrogen transfer properties in tantalum nitride based materials[J]. Catalysis Today,2017,286:147−154. doi: 10.1016/j.cattod.2016.06.035
    [66] GAO W, GUO J, WANG P, et al. Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers[J]. Nat Energy,2018,3(12):1067−1075. doi: 10.1038/s41560-018-0268-z
    [67] GAO W, WANG P, GUO J, et al. Barium hydride-mediated nitrogen transfer and hydrogenation for ammonia synthesis: a case study of cobalt[J]. ACS Catal,2017,7(5):3654−3661. doi: 10.1021/acscatal.7b00284
    [68] YAN H, GAO W, WANG Q, et al. Lithium palladium hydride promotes chemical looping ammonia synthesis mediated by lithium imide and hydride[J]. J Phys Chem C,2021,125(12):6716−6722. doi: 10.1021/acs.jpcc.1c01230
    [69] WANG R, GAO W, FENG S, et al. Zn promotes chemical looping ammonia synthesis mediated by LiH−Li2NH couple [J]. ChemSusChem, 2023, 16(22).
    [70] FENG S, GAO W, WANG Q, et al. A multi-functional composite nitrogen carrier for ammonia production via a chemical looping route[J]. J Mater Chem A,2021,9(2):1039−1047. doi: 10.1039/D0TA10519H
    [71] FENG S, GAO W, GUO J, et al. Electrodriven chemical looping ammonia synthesis mediated by lithium imide[J]. ACS Energy Lett,2023,8(3):1567−1574. doi: 10.1021/acsenergylett.2c02730
    [72] MICHALSKY R, PFROMM P H. Thermodynamics of metal reactants for ammonia synthesis from steam, nitrogen and biomass at atmospheric pressure[J]. AIChE J,2011,58(10):3203−3213.
    [73] SWEARER D F, KNOWLES N R, EVERITT H O, et al. Light-driven chemical looping for ammonia synthesis[J]. ACS Energy Lett,2019,4(7):1505−1512. doi: 10.1021/acsenergylett.9b00860
    [74] MICHALSKY R, PFROMM P H. An ionicity rationale to design solid phase metal nitride reactants for solar ammonia production[J]. J Phys Chem C,2012,116(44):23243−23251. doi: 10.1021/jp307382r
    [75] MICHALSKY R, PARMAN B J, AMANOR-BOADU V, et al. Solar thermochemical production of ammonia from water, air and sunlight: Thermodynamic and economic analyses[J]. Energy,2012,42(1):251−260. doi: 10.1016/j.energy.2012.03.062
    [76] MICHALSKY R, PFROMM P H, STEINFELD A. Rational design of metal nitride redox materials for solar-driven ammonia synthesis [J]. Interface Focus, 2015, 5(3).
    [77] HEIDLAGE M G, KEZAR E A, SNOW K C, et al. Thermochemical synthesis of ammonia and syngas from natural gas at atmospheric pressure[J]. Ind Eng Chem Res,2017,56(47):14014−14024. doi: 10.1021/acs.iecr.7b03173
    [78] MICHALSKY R, PFROMM P H. Chromium as reactant for solar thermochemical synthesis of ammonia from steam, nitrogen, and biomass at atmospheric pressure[J]. Sol Energy,2011,85(11):2642−2654. doi: 10.1016/j.solener.2011.08.005
    [79] LICHT S, CUI B, WANG B, et al. RETRACTED: Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3[J]. Science,2014,345(6197):637−640. doi: 10.1126/science.1254234
    [80] CUI B, ZHANG J, LIU S, et al. Electrochemical synthesis of ammonia directly from N2 and water over iron-based catalysts supported on activated carbon[J]. Green Chem,2017,19(1):298−304. doi: 10.1039/C6GC02386J
    [81] GÁLVEZ M E, FREI A, HALMANN, et al. Ammonia production via a two-step Al2O3/AlN thermochemical cycle 1: Thermodynamic environmental and economic analyses[J]. Ind Eng Chem Res,2007,46(7):2042−2046. doi: 10.1021/ie061550u
    [82] GÁLVEZ M E, FREI A, HALMANN, et al. Ammonia production via a two-step Al2O3/AlN thermochemical cycle 2: Kinetic analysis[J]. Ind Eng Chem Res,2007,46(7):2047−2053. doi: 10.1021/ie061551m
    [83] GÁLVEZ M E, FREI A, HALMANN, et al. Ammonia production via a two-step Al2O3/AlN thermochemical cycle 3: Influence of the carbon reducing agent and cyclability[J]. Ind Eng Chem Res,2007,46(7):2231−2237. doi: 10.1021/ie0611305
    [84] ZHANG Q, WU Y, GAO Y, et al. High-performance mesoporous (AlN/Al2O3) for enhanced NH3 yield during chemical looping ammonia generation technology[J]. Int J Hydrogen Energy,2020,45(16):9903−9913. doi: 10.1016/j.ijhydene.2020.01.172
    [85] BOUSSEBHA H, MUTLU N, CANIKOğLU N, et al. Synthesis of submicron AlN powder using dynamic/thermochemical method[J]. Int J Applied Ceramic Tech,2022,19(6):2967−2978. doi: 10.1111/ijac.14116
    [86] FU R L, ZHOU H P, CHEN L, et al. Morphologies and growth mechanisms of aluminum nitride whiskers synthesized by carbothermal reduction[J]. Mater. Sci. Eng. A,1999,266(1-2):44−51. doi: 10.1016/S0921-5093(99)00047-7
    [87] HAO X, WAN S, KANG W, et al. Carbothermal synthesis of high-aspect-ratio AlN whiskers using graphite felt as carbon source[J]. Ceram Int,2022,48(7):9842−9847. doi: 10.1016/j.ceramint.2021.12.186
    [88] FENG M, ZHANG Q, WU Y, et al. Using coal coke for N-sorption with an Al-based nitrogen carrier during chemical looping ammonia generation[J]. Energy Fuels,2020,34(10):12527−12534. doi: 10.1021/acs.energyfuels.0c02733
    [89] TSUGE A, INOUE H, KASORI M, et al. Raw material effect on AIN powder synthesis from Al2O3 carbothermal reduction[J]. J Mater Sci,1990,25:2359−2361. doi: 10.1007/BF00638028
    [90] 匡加才, 张长瑞, 周新贵, 等. 不同铝源对碳热还原法合成氮化铝粉末的影响[J]. 宇航材料工艺,2003,33(5):44−47

    KUANG Jiacai, ZHANG Changrui, ZHOU Xingui, et al. Effects of various aluminum sources on AlN powder prepared by carbon thermal eduction[J]. Aerosp Mat Technol,2003,33(5):44−47.
    [91] HU J L, HUANG Q Z, YANG X, et al. Effects of different aluminum sources and calcination temperatures on the synthesis of ultrafine AlN powder via carbothermal reduction nitridation[J]. J Ceram Process Res,2017,18(3):230−237.
    [92] WANG Q, CUI W, GE Y, et al. Carbothermal synthesis of spherical AlN granules: Effects of synthesis parameters and Y2O3 additive[J]. Ceram Int,2015,41(5):6715−6721. doi: 10.1016/j.ceramint.2015.01.114
    [93] LI F, LIANG Q, JINGWU Z, et al. Phase, microstructure and sintering of aluminum nitride powder by the carbothermal reduction-nitridation process with Y2O3 addition[J]. J Eur Ceram Soc,2018,38(4):1170−1178. doi: 10.1016/j.jeurceramsoc.2017.10.029
    [94] MOLISANI A L, YOSHIMURA H N. Low-temperature synthesis of AlN powder with multicomponent additive systems by carbothermal reduction–nitridation method[J]. Mater Res Bull,2010,45(6):733−738. doi: 10.1016/j.materresbull.2010.02.012
    [95] WANG Q, GE Y, CUI W, et al. Carbothermal synthesis of micro-scale spherical AlN granules with CaF2 additive[J]. J Alloys Compd,2016,663:823−828. doi: 10.1016/j.jallcom.2015.12.178
    [96] WANG Q, CAO W, KUANG J, et al. Spherical AlN particles synthesized by the carbothermal method: Effects of reaction parameters and growth mechanism[J]. Ceram Int,2018,44(5):4829−4834. doi: 10.1016/j.ceramint.2017.12.071
    [97] WANG Q, GE Y, KUANG J, et al. Effects of additives on the synthesis of spherical aluminum nitride granules by carbothermal reduction-nitridation process[J]. J Alloys Compd,2017,696:220−225. doi: 10.1016/j.jallcom.2016.11.252
    [98] BARTEL C J, MUHICH C L, WEIMER A W, et al. Aluminum nitride hydrolysis enabled by hydroxyl-mediated surface proton hopping[J]. Acs Appl Mater Inter,2016,8(28):18550−18559. doi: 10.1021/acsami.6b04375
    [99] WU Y, JIANG G, ZHANG H, et al. Fe2O3, a cost effective and environmentally friendly catalyst for the generation of NH3– a future fuel – using a new Al2O3-looping based technology[J]. Chem Commun,2017,53(77):10664−10667. doi: 10.1039/C7CC04742H
    [100] GAO Y, WU Y, ZHANG Q, et al. N-desorption or NH3 generation of TiO2-loaded Al-based nitrogen carrier during chemical looping ammonia generation technology[J]. Int J Hydrogen Energy,2018,43(34):16589−16597. doi: 10.1016/j.ijhydene.2018.07.042
    [101] WU Y, GAO Y, ZHANG Q, et al. Promising zirconia-mixed Al-based nitrogen carriers for chemical looping of NH3: Reduced NH3 decomposition and improved NH3 yield [J]. Fuel, 2020, 264.
    [102] XIONG C, WU Y, FENG M, et al. High thermal stability Si-Al based N-carrier for efficient and stable chemical looping ammonia generation [J]. Appl Energy, 2022, 323.
    [103] PéREZ-RAMíREZ J, KONDRATENKO E V. Evidences of the origin of N2O in the high-temperature NH3 oxidation over Pt–Rh gauze[J]. Chem Commun,2004,(4):376−377. doi: 10.1039/B312685D
    [104] KONDRATENKO E V, PéREZ-RAMíREZ J. Transient studies on the effect of oxygen on the high-temperature NO reduction by NH3 over Pt–Rh gauze[J]. Appl Catal A-gen,2005,289(1):97−103. doi: 10.1016/j.apcata.2005.04.017
    [105] PéREZ-RAMíREZ J, KONDRATENKO E V, NOVELL-LERUTH G, et al. Mechanism of ammonia oxidation over PGM (Pt, Pd, Rh) wires by temporal analysis of products and density functional theory[J]. J Catal,2009,261(2):217−223. doi: 10.1016/j.jcat.2008.11.018
    [106] BIAUSQUE G, SCHUURMAN Y. The reaction mechanism of the high temperature ammonia oxidation to nitric oxide over LaCoO3[J]. J Catal,2010,276(2):306−313. doi: 10.1016/j.jcat.2010.09.022
    [107] HOU T, YANG H, FAN X, et al. Catalytic oxidation of ammonia to NO over perovskite-type LaMnO3 and LaVO4 catalysts[J]. Cataly Lett,2011,141(8):1215−1218. doi: 10.1007/s10562-011-0634-y
    [108] FUNG W K, CLAEYS M, VAN STEEN E. Effective utilization of the catalytically active phase: NH3 oxidation over unsupported and supported Co3O4[J]. Cataly Lett,2012,142(4):445−451. doi: 10.1007/s10562-012-0790-8
    [109] PINAEVA L G, PROSVIRIN I P, DOVLITOVA L S, et al. MeOx/Al2O3 and MeOx/CeO2 (Me = Fe, Co, Ni) catalysts for high temperature N2O decomposition and NH3 oxidation[J]. Cataly Sci Technol,2016,6(7):2150−2161. doi: 10.1039/C5CY01381J
    [110] 王慧敏, 宁平, 张秋林, 等. 不同RuO2含量对RuO2-Fe2O3催化剂氨选择性催化氧化性能的影响[J]. 燃料化学学报(中英文),2019,47(2):215−223. doi: 10.1016/S1872-5813(19)30011-8

    WANG Huimin, NING Ping, ZHANG Qiulin, et al. Effect of different RuO2 contents on selective catalytic oxidation of ammonia over RuO2-Fe2O3 catalysts[J]. J Fuel Chem Technol,2019,47(2):215−223. doi: 10.1016/S1872-5813(19)30011-8
    [111] THENGANE S K, BANDYOPADHYAY S, MITRA S, et al. An alternative process for nitric oxide and hydrogen production using metal oxides[J]. Chem Eng Res Des,2016,112:36−45. doi: 10.1016/j.cherd.2016.06.015
    [112] RUAN C, WANG X, WANG C, et al. Selective catalytic oxidation of ammonia to nitric oxide via chemical looping[J]. Nat Commun,2022,13(1):718. doi: 10.1038/s41467-022-28370-0
    [113] LöWE H, WEI G, JIANG M, et al. Multi-step processing in a microstructured flow reactor: direct nitration of propane–a proof of principle [J]. Green Process Synth, 2012, 1(5).
    [114] PENG L, PENG H, LI N, et al. Facile access to nitroalkanes: Nitration of alkanes by selective C–H nitration using metal nitrate, catalyzed by in-situ generated metal oxide [J]. Catal Commun, 2020, 142.
    [115] TIAN M K, TANG S L, TANG H B, et al. Theoretical study on the mechanism for the formation of nitro compounds in red oil [J]. J Chem, 2020.
    [116] 李星彦, 王墨, 戴璇, 等. NO2硝化正己烷及其理论计算[J]. 化工进展,2021,40(10):5491−5498.

    (LI Xingyan, WANG Mo, DAI Xuan, et al. Nitration of n-hexane with NO2 and theoretical calculation[J]. Chem Ind Eng Prog,2021,40(10):5491−5498.
    [117] NIKL J, HOFMAN K, MOSSAZGHI S, et al. Electrochemical oxo-functionalization of cyclic alkanes and alkenes using nitrate and oxygen[J]. Nat Commun,2023,14(1):4565. doi: 10.1038/s41467-023-40259-0
    [118] HE X, LI Z, HU H, et al. Chemical looping conversion of ethane to ethanol via photo-assisted nitration of ethane[J]. Cell Rep Phys Sci,2021,2(7):100481. doi: 10.1016/j.xcrp.2021.100481
    [119] HE X, ZHANG L, CHEN J, et al. Photo-driven aerobic methane nitration[J]. Inorg Chem,2023,62(26):10343−10350. doi: 10.1021/acs.inorgchem.3c01210
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  25
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-10
  • 修回日期:  2024-05-09
  • 录用日期:  2024-05-10
  • 网络出版日期:  2024-06-06

目录

    /

    返回文章
    返回