留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改性硫化钼催化剂协同低温等离子体转化H2S-CO2酸气制合成气的研究

冯文爽 宇文晓萌 穆晓亮 赵璐 房克功

冯文爽, 宇文晓萌, 穆晓亮, 赵璐, 房克功. 改性硫化钼催化剂协同低温等离子体转化H2S-CO2酸气制合成气的研究[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024026
引用本文: 冯文爽, 宇文晓萌, 穆晓亮, 赵璐, 房克功. 改性硫化钼催化剂协同低温等离子体转化H2S-CO2酸气制合成气的研究[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2024026
FENG Wenshuang, YUWEN Xiaomeng, MU Xiaoliang, ZHAO Lu, FANG Kegong. Combination of modified molybdenum sulfide catalyst and non-thermal plasma for syngas production from H2S-CO2 acid gas[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024026
Citation: FENG Wenshuang, YUWEN Xiaomeng, MU Xiaoliang, ZHAO Lu, FANG Kegong. Combination of modified molybdenum sulfide catalyst and non-thermal plasma for syngas production from H2S-CO2 acid gas[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2024026

改性硫化钼催化剂协同低温等离子体转化H2S-CO2酸气制合成气的研究

doi: 10.19906/j.cnki.JFCT.2024026
基金项目: 国家自然科学基金(21978313),中国科学院山西煤炭化学研究所创新基金(SCJC-DT-2022-05),煤转化国家重点实验室自主研究课题项目(2020BWZ002)和中国科学院青年创新促进会人才项目(2020181)资助
详细信息
    通讯作者:

    Tel: +86-0351-4041153, E-mail: zhaolu@sxicc.ac.cn

    kgfang@sxicc.ac.cn

  • 中图分类号: TQ110.9; X701.7

Combination of modified molybdenum sulfide catalyst and non-thermal plasma for syngas production from H2S-CO2 acid gas

Funds: The project was supported by the National Natural Science Foundation of China (21978313), the Innovation Foundation of ICC-CAS (SCJC-DT-2022-05), the Autonomous Research Project of SKLCC (2020BWZ002) and the Youth Innovation Promotion Association of CAS (2020181).
  • 摘要: 以低温等离子体和催化剂耦合法将H2S和CO2混合酸气一步转化为合成气,既完成了两者清洁化处理,又实现了资源化利用,是一条制备合成气的新路线。本研究采用铜、锌为助剂对硫化钼催化剂改性,显著提升了其催化H2S-CO2制合成气反应性能。结合多种分析表征手段对比两种助剂引入后对硫化钼催化剂结构、组成、形貌、化合价态等物化特征的影响。通过控制低温等离子体放电条件,深入探究了两种助剂对低温等离子体下催化转化H2S和CO2酸气制合成气的反应性能影响规律和关键因素。研究发现,引入铜、锌助剂后,硫化钼活性相粒径减小且分散度高,提供了更多活性位点。同时也增强了对H2S和CO2分子吸附强度,从而更利于H2S和CO2分子的吸附活化,揭示出低温等离子体与改性硫化钼催化剂协同反应的构效关联。有关理论研究丰富拓展了低温等离子体-催化协同理论,并为改性硫化钼材料的合成提供借鉴。
  • 图  1  低温等离子体反应系统示意图

    Figure  1  Schematic diagram of the non-thermal plasma experimental setup

    1—Gas Cylinder; 2—Mass Flow Controller; 3—Oscilloscope; 4—High Voltage Power Supply; 5—DBD Reactor; 6—Grounding Electrode; 7—Temperature Distribution from Infrared Imaging Technology; 8—Sulphur Tank; 9—Cold Trap;10—Gas Chromatograph; 11—Lye Treatment; 12—OES Analysis.

    图  2  Cu-MoS2/Al2O3、Zn-MoS2/Al2O3和MoS2/Al2O3催化剂以及Al2O3载体的XRD谱图

    Figure  2  XRD patterns of the Cu-MoS2/Al2O3, Zn-MoS2/Al2O3, MoS2/Al2O3 catalysts and Al2O3 support

    图  3  Cu-MoS2/Al2O3、Zn-MoS2/Al2O3和MoS2/Al2O3催化剂以及Al2O3载体的UV-vis谱图

    Figure  3  UV-vis spectra of the Cu-MoS2/Al2O3, Zn-MoS2/Al2O3, MoS2/Al2O3 catalysts and Al2O3 support

    图  4  MoS2/Al2O3 (a)−(d)、Zn-MoS2/Al2O3 (e)−(h)和Cu-MoS2/Al2O3 (i)−(l) 催化剂的SEM、TEM和HR-TEM图像

    Figure  4  SEM images, TEM images, and HR-TEM images of the MoS2/Al2O3 (a)−(d)、Zn-MoS2/Al2O3 (e)−(h) and Cu-MoS2/Al2O3 (i)−(l) catalysts

    图  5  Cu-MoS2/Al2O3、Zn-MoS2/Al2O3和MoS2/Al2O3催化剂以及Al2O3载体的H2-TPR谱图

    Figure  5  H2-TPR profiles of the Cu-MoS2/Al2O3, Zn-MoS2/Al2O3, MoS2/Al2O3 catalysts and Al2O3 support

    图  6  Cu-MoS2/Al2O3、Zn-MoS2/Al2O3和MoS2/Al2O3催化剂以及Al2O3载体的H2S-TPD谱图

    Figure  6  H2S-TPD profiles of the Cu-MoS2/Al2O3, Zn-MoS2/Al2O3, MoS2/Al2O3 catalysts and Al2O3 support

    图  7  Cu-MoS2/Al2O3、Zn-MoS2/Al2O3和MoS2/Al2O3催化剂以及Al2O3载体的CO2-TPD谱图

    Figure  7  CO2-TPD profiles of the Cu-MoS2/Al2O3, Zn-MoS2/Al2O3, MoS2/Al2O3 catalysts and Al2O3 support

    图  8  Cu-MoS2/Al2O3、Zn-MoS2/Al2O3和MoS2/Al2O3催化剂以及Al2O3载体的H2-TPD谱图

    Figure  8  H2-TPD profiles of the Cu-MoS2/Al2O3, Zn-MoS2/Al2O3, MoS2/Al2O3 catalysts and Al2O3 support

    图  9  不同催化剂的XPS谱图

    Figure  9  XPS spectra of the different catalysts

    (a): the full scan surveys; (b): Cu 2p3/2; (c): Zn 2p3/2; (d): Mo 3d; (e): S 2p.

    图  10  H2S-CO2等离子体催化转化性能

    Figure  10  Plasma-catalytic performance for H2S-CO2 conversionReaction conditions: feed: H2S/CO2 molar ratio = 20:15; flow rate: 35 mL/min; catalyst bed volume: 15.0 mL.

    图  11  (a) Zn-MoS2/Al2O3 催化剂长周期测试; (b) Zn-MoS2/Al2O3催化剂反应前后XRD谱图; (c)和(d) Zn-MoS2/Al2O3催化剂反应前后SEM图像

    Figure  11  (a) Long-time test of the Zn-MoS2/Al2O3 catalyst; (b) XRD patterns of the Zn-MoS2/Al2O3 catalyst before and after reaction; SEM images of the Zn-MoS2/Al2O3 catalyst before (c) and after (d) reactionReaction conditions: feed: H2S/CO2 molar ratio = 20:15; flow rate: 35 mL/min; catalyst bed volume: 15.0 mL; E: 1.1 mmol/kJ.

    图  12  填充Zn-MoS2/Al2O3催化剂时低温等离子体下H2S-CO2转化反应的原位发射光谱图

    Figure  12  In-situ emission spectra of H2S-CO2 reaction in non-thermal plasma with Zn-MoS2/Al2O3 catalystReaction condition: E: 1.1 mmol/kJ.

    表  1  Cu-MoS2/Al2O3、Zn-MoS2/Al2O3和MoS2/Al2O3催化剂以及Al2O3载体理化性质

    Table  1  Physic-chemical properties of the Cu-MoS2/Al2O3, Zn-MoS2/Al2O3, MoS2/Al2O3 catalysts and Al2O3 support

    Sample Specific surface area/(m2·g−1) Particle size/(MoS2, nm) Lattice parameter a/(MoS2, nm) Band gap/eV
    Al2O3 300
    MoS2/Al2O3 252 8.8 0.316 1.32
    Zn-MoS2/Al2O3 245 7.1 0.317 1.38
    Cu-MoS2/Al2O3 259 7.5 0.319 1.16
    下载: 导出CSV
  • [1] HALLIDAY C, HATTON T A. Sorbents for the capture of CO2 and other acid gases: A review[J]. Ind Eng Chem Res,2021,60(26):9313−9346. doi: 10.1021/acs.iecr.1c00597
    [2] GUPTA A K, IBRAHIM S, Al SHOAIBI A. Advances in sulfur chemistry for treatment of acid gases[J]. Prog Energy Combust,2016,54:65−92. doi: 10.1016/j.pecs.2015.11.001
    [3] 喻昕蕾, 潘伟童, 高瑞, 等. LaCoO3对H2S选择氧化性能的影响[J]. 燃料化学学报,2019,47(8):973−979.

    YU Xinlei, PAN Weitong, GAO Rui, et al. Selective oxidation of H2S over the LaCoO3 catalyst[J]. J Fuel Chem Technol,2019,47(8):973−979.
    [4] 王晗, 樊升, 王森, 等. 二氧化碳加氢制一些烃类化合物的研究进展[J]. 燃料化学学报,2021,49(11):1609−1619. doi: 10.1016/S1872-5813(21)60122-6

    WANG Han, FAN Sheng, WANG Sen, et al. Research progresses in the hydrogenation of carbon dioxide to certain hydrocarbon products[J]. J Fuel Chem Technol,2021,49(11):1609−1619. doi: 10.1016/S1872-5813(21)60122-6
    [5] LAGAS J A, BORSBOOM J, BERBEN P H. Selective-oxidation catalyst improves Claus process[J]. Oil Gas J,1988,86:67−71.
    [6] ZHENG X, LEI G, WANG S, et al. Advances in resources recovery of H2S: A review of desulfurization processes and catalysts[J]. ACS Catal,2023,13(17):11723−11752. doi: 10.1021/acscatal.3c02294
    [7] SU H, LI Y, LI P, et al. Simultaneous recovery of carbon and sulfur resources from reduction of CO2 with H2S using catalysts[J]. J Energy Chem,2016,25(1):110−116. doi: 10.1016/j.jechem.2015.08.009
    [8] MA W, WANG H, YU W, et al. Achieving simultaneous CO2 and H2S conversion via a coupled solar-driven electrochemical approach on non-precious-metal catalysts[J]. Angew Chem Int Ed,2018,57(13):3473−3477. doi: 10.1002/anie.201713029
    [9] ZHANG F, WEI Z, JIANG G, et al. Synergistic conversion of acid gases (H2S and CO2) to valuable chemicals: Carbonyl sulfide synthesis over vacancy-defective CoMo sulfide catalysts[J]. Appl Catal B: Environ,2022,319:121912. doi: 10.1016/j.apcatb.2022.121912
    [10] ZHOU Q, WU P, LIU C, et al. Highly selective conversion of H2S/CO2 and reaction mechanism with CeO2 loading of MgO as catalysts[J]. Ind Eng Chem Res,2023,62(17):6660−6671. doi: 10.1021/acs.iecr.3c00257
    [11] BASSANI A, BOZZANO G, PIROLA C, et al. Low impact methanol production from sulfur rich coal gasification[J]. Energy Procedia,2017,105:4519−4524. doi: 10.1016/j.egypro.2017.03.970
    [12] WU J, HE R, CHENG S, et al. Simultaneous immobilization of CO2 and H2S by propargyl amines under mild conditions: Efficient synthesis of thiazolidine-2-ones[J]. ACS Sustainable Chem Eng,2022,10(3):1214−1219. doi: 10.1021/acssuschemeng.1c07010
    [13] ZHAO L, LIU X, MU X, et al. Highly selective conversion of H2S-CO2 to syngas by combination of non-thermal plasma and MoS2/Al2O3[J]. J CO2 Util,2020,37:45−54. doi: 10.1016/j.jcou.2019.11.021
    [14] 余康, 李民, 孙高攀, 等. 介质阻挡放电等离子体转化H2S-CO2酸气制合成气的影响因素研究[J]. 燃料化学学报(中英文),2023,51(12):1782−1790. doi: 10.1016/S1872-5813(23)60365-2

    YU Kang, LI Min, SUN Gaopan, et al. The influence factors of dielectric barrier discharge plasma to production of syngas derived from H2S-CO2 acid gas[J]. J Fuel Chem Technol,2023,51(12):1782−1790. doi: 10.1016/S1872-5813(23)60365-2
    [15] ZHAO L, WANG Y, LI X, et al. Hydrogen production via decomposition of hydrogen sulfide by synergy of non-thermal plasma and semiconductor catalysis[J]. Int J Hydrogen Energy,2013,38(34):14415−14423. doi: 10.1016/j.ijhydene.2013.09.008
    [16] MEI D, LIU S, YANIK J, et al. Plasma-catalytic reforming of naphthalene and toluene as biomass tar over honeycomb catalysts in a gliding arc reactor[J]. ACS Sustainable Chem Eng,2022,10(27):8958−8969. doi: 10.1021/acssuschemeng.2c02495
    [17] FONSECA H A B, VERGA L G, DA SILVA J L F. Theoretical tuning of the Cu/S ratio on two-dimensional CuSx materials for the CO2 electrochemical reduction[J]. J Phys Chem C,2023,127(50):24118−24128. doi: 10.1021/acs.jpcc.3c05682
    [18] SHI X, WANG L, DAI W, et al. CO2 photoreduction catalyzed by Cu-deficient Cu1.95S@CuS: Enhanced performance via boosted directional interfacial charge transfer[J]. ACS Catal,2023,13(8):5264−5271. doi: 10.1021/acscatal.3c00492
    [19] ZHAO L, WANG Y, WANG A, et al. Cr-doped ZnS semiconductor catalyst with high catalytic activity for hydrogen production from hydrogen sulfide in non-thermal plasma[J]. Catal Today,2019,337:83−89. doi: 10.1016/j.cattod.2019.02.032
    [20] ZHAO L, WANG Y, SUN Z, et al. Synthesis of highly dispersed metal sulfide catalysts via low temperature sulfidation in dielectric barrier discharge plasma[J]. Green Chem,2014,16(5):2619−2626. doi: 10.1039/C3GC42313A
    [21] LASHGARI M, GHANIMATI M. Photocatalytic degradation of H2S aqueous media using sulfide nanostructured solid-solution solar-energy-materials to produce hydrogen fuel[J]. J Hazard Mater,2018,345:10−17. doi: 10.1016/j.jhazmat.2017.10.062
    [22] MA G, YAN H, ZONG X, et al. Photocatalytic splitting of H2S to produce hydrogen by gas-solid phase reaction[J]. Chin J Catal,2008,29(4):313−315. doi: 10.1016/S1872-2067(08)60029-7
    [23] 李莹, 赵璐, 刘晓展, 等. 低温等离子体制备低碳醇合成用KNiMo基催化剂及其结构性能表征[J]. 燃料化学学报, 2019, 47 (5): 513−522.

    LI Ying, ZHAO Lu, LIU Xiaozhan, et al. Preparation of KNiMo-based catalysts by using non-thermal plasma and their catalytic performance in the synthesis of higher alcohols from syngas[J]. J Fuel Chem Technol, 2019, 47 (5): 513−521.)
    [24] 王乾浩, 赵璐, 孙付琳, 等. ZSM-5催化剂与低温等离子体协同转化H2S-CO2制合成气[J]. 化工学报,2022,73(1):255−265.

    WANG Qianhao, ZHAO Lu, SUN Fulin, et al. Production of syngas derived from H2S-CO2 via synergy of ZSM-5 catalyst and non-thermal plasma[J]. CIESC J,2022,73(1):255−265.
    [25] KIM H H, LEE Y H, OGATA A, et al. Plasma-driven catalyst processing packed with photocatalyst for gas-phase benzene decomposition[J]. Catal Commun,2003,4(7):347−351. doi: 10.1016/S1566-7367(03)00086-4
    [26] TU X, WHITEHEAD J C. Plasma dry reforming of methane in an atmospheric pressure AC gliding arc discharge: Co-generation of syngas and carbon nanomaterials[J]. Int J Hydrog Energy,2014,39(18):9658−9669. doi: 10.1016/j.ijhydene.2014.04.073
    [27] CULLITY B D. Elements of X-ray[J]. by M. Cohen, Addison-Weslay, Boston, 1978: 447−478.
    [28] HU J, YU L, DENG J, et al. Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol[J]. Nat Catal,2021,4(3):242−250. doi: 10.1038/s41929-021-00584-3
    [29] MAO J, LIU H, CUI X, et al. Direct conversion of methane with O2 at room temperature over edge-rich MoS2[J]. Nat Catal,2023,6(11):1052−1061. doi: 10.1038/s41929-023-01030-2
    [30] 赵立业, 李恒, 王亮, 等. 卤素原子对卤氧化铋(BiOX, X = Cl, Br, I)光催化性能的影响[J]. 燃料化学学报(中英文),2022,50(1):122−128.

    ZHAO Liye, LI Heng, WANG Liang, et al. Effect of halogen atoms on photocatalytic activity of bismuth oxyhalide (BIOX, X = Cl, Br, I)[J]. J Fuel Chem Technol,2022,50(1):122−128.
    [31] FRIDMAN A. Plasma Chemistry[M]. Cambridge University Press, 2008.
    [32] RIAD M, MIKHAIL S. Effect of support modification on the characterization and catalytic activity of Mo/Al2O3 catalysts[J]. J Energy Chem,2015,24(4):520−528. doi: 10.1016/j.jechem.2015.06.003
    [33] LIANG M, KANG W, XIE K. Comparison of reduction behavior of Fe2O3, ZnO and ZnFe2O4 by TPR technique[J]. J Nat Gas Chem,2009,18(1):110−113. doi: 10.1016/S1003-9953(08)60073-0
    [34] LUO M F, FANG P, HE M, et al. In situ XRD, Raman, and TPR studies of CuO/Al2O3 catalysts for CO oxidation[J]. J Mol Catal A-Chem,2005,239(1-2):243−248. doi: 10.1016/j.molcata.2005.06.029
    [35] LIU B S, ZHANG Y, LIU J F, et al. Characteristic and mechanism of methane dehydroaromatization over Zn-based/HZSM-5 catalysts under conditions of atmospheric pressure and supersonic jet expansion[J]. J Phys Chem C,2011,115(34):16954−16962. doi: 10.1021/jp2027065
    [36] FANG X, YAO S, QING Z, et al. Study on silica supported CuCrMo nitrobenzene hydrogenation catalysts[J]. Appl Catal A: Gen,1997,161(1-2):129−135. doi: 10.1016/S0926-860X(97)00038-0
    [37] SANTOS R C R, BRAGA D M V, PINHEIRO A N, et al. Role of Cu, Ni and Co metals in the acidic and redox properties of Mo catalysts supported on Al2O3 spheres for glycerol conversion[J]. Catal Sci Technol,2016,6(13):4986−5002. doi: 10.1039/C6CY00096G
    [38] WANG C H, WENG H S. Promoting effect of molybdenum on CuO/γ-Al2O3 catalyst for the oxidative decomposition of (CH3)2S2[J]. Appl Catal A: Gen,1998,170(1):73−80. doi: 10.1016/S0926-860X(98)00050-7
    [39] NAVARRO R M, ÁLVAREZ-GALVÁN M C, ROSA F, et al. Hydrogen production by oxidative reforming of hexadecane over Ni and Pt catalysts supported on Ce/La-doped Al2O3[J]. Appl Catal A: Gen,2006,297(1):60−72. doi: 10.1016/j.apcata.2005.08.036
    [40] 卢诗文, 吴康, 刘鹏, 等. 钴酸镧基钙钛矿耦合非热等离子体催化转化CO2的实验研究[J]. 环境科学学报, 2023, 43 (2): 424−432.

    LU Shiwen, WU Kang, LIU Peng, et al. Experimental study on catalytic CO2 conversion by LaCoO3-based perovskites coupled with non-thermal plasma[J] Acta Scien Circum, 2023, 43 (2): 424−432.)
    [41] ZHU Y, YUK S F, ZHENG J, et al. Environment of metal-O-Fe bonds enabling high activity in CO2 reduction on single metal atoms and on supported nanoparticles[J]. J Am Chem Soc,2021,143(14):5540−5549. doi: 10.1021/jacs.1c02276
    [42] HUANG W, LIU F, HUANG Y, et al. Facile one-pot synthesis of hollow-structured CuS/Cu2S hybrid for enhanced electrochemical determination of glucose[J]. Electrochemistry,2021,89(4):340−347. doi: 10.5796/electrochemistry.21-00027
    [43] LIU X, ZHAO L, LI Y, et al. Ni-Mo sulfide semiconductor catalyst with high catalytic activity for one-step conversion of CO2 and H2S to syngas in non-thermal plasma[J]. Catalysts,2019,9(6):525. doi: 10.3390/catal9060525
    [44] ZHAO L, LI Y, LIU X, et al. Low-temperature synthesis of high-performance nano-MoS2-based catalyst via non-thermal plasma for higher alcohol synthesis from syngas[J]. Catal Today,2020,355:17−25. doi: 10.1016/j.cattod.2019.01.069
    [45] AHMADI M, ALAVI S M, LARIMI A. Highly active platinum decorated BiVO4 nanosheet/TiO2 nanobelt heterojunction for photocatalytic CO2 reduction[J]. Surf Interfaces,2024,45:103908. doi: 10.1016/j.surfin.2024.103908
    [46] ZHAO G B, JOHN S, ZHANG J J, et al. Production of hydrogen and sulfur from hydrogen sulfide in a nonthermal-plasma pulsed corona discharge reactor[J]. Chem Eng Sci,2007,62(8):2216−2227. doi: 10.1016/j.ces.2006.12.052
    [47] RAO M U, BHARGAVI K, MADRAS G, et al. Basic metal oxide integrated DBD packed bed reactor for the decomposition of CO2[J]. Chem Eng J,2023,468:143671. doi: 10.1016/j.cej.2023.143671
    [48] STEEN M L, BUTOI C I, FISHER E R. Identification of gas-phase reactive species and chemical mechanisms occurring at plasma-polymer surface interfaces[J]. Langmuir,2001,17(26):8156−8166. doi: 10.1021/la0106642
    [49] THOMAS L, MAILLÉ L, BADIE J M, et al. Microwave plasma chemical vapour deposition of tetramethylsilane: Correlations between optical emission spectroscopy and film characteristics[J]. Surf Coat Technol,2001,142:314−320.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  30
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-08
  • 修回日期:  2024-04-25
  • 录用日期:  2024-04-25
  • 网络出版日期:  2024-06-04

目录

    /

    返回文章
    返回