留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型噻吩基共价三嗪骨架材料的制备及其高效光解水产氢性能

徐睿钦 张建超 何曼曼 潘柏臻 刘连伟 张广权 孙锐 章宇翾 柯思源 孔德斌 王林

徐睿钦, 张建超, 何曼曼, 潘柏臻, 刘连伟, 张广权, 孙锐, 章宇翾, 柯思源, 孔德斌, 王林. 新型噻吩基共价三嗪骨架材料的制备及其高效光解水产氢性能[J]. 燃料化学学报(中英文). doi: 10.3724/2097-213X.2024.JFCT.0001
引用本文: 徐睿钦, 张建超, 何曼曼, 潘柏臻, 刘连伟, 张广权, 孙锐, 章宇翾, 柯思源, 孔德斌, 王林. 新型噻吩基共价三嗪骨架材料的制备及其高效光解水产氢性能[J]. 燃料化学学报(中英文). doi: 10.3724/2097-213X.2024.JFCT.0001
XU Ruiqin, ZHANG Jianchao, HE Manman, PAN Baizhen, LIU Lianwei, ZHANG Guangquan, SUN Rui, ZHANG Yuxuan, KE Siyuan, KONG Debin, WANG Lin. Novel covalent triazine frameworks incorporating thiophene moiety for enhanced photocatalytic hydrogen production[J]. Journal of Fuel Chemistry and Technology. doi: 10.3724/2097-213X.2024.JFCT.0001
Citation: XU Ruiqin, ZHANG Jianchao, HE Manman, PAN Baizhen, LIU Lianwei, ZHANG Guangquan, SUN Rui, ZHANG Yuxuan, KE Siyuan, KONG Debin, WANG Lin. Novel covalent triazine frameworks incorporating thiophene moiety for enhanced photocatalytic hydrogen production[J]. Journal of Fuel Chemistry and Technology. doi: 10.3724/2097-213X.2024.JFCT.0001

新型噻吩基共价三嗪骨架材料的制备及其高效光解水产氢性能

doi: 10.3724/2097-213X.2024.JFCT.0001
基金项目: 国家自然科学基金 (52172040) 和中国石油大学(华东)本科教学改革重点项目(CZ2022016)资助
详细信息
    通讯作者:

    E-mail: kongdb@upc.edu.cn

    linwang@upc.edu.cn

  • 中图分类号: O643

Novel covalent triazine frameworks incorporating thiophene moiety for enhanced photocatalytic hydrogen production

Funds: The project was supported by National Natural Science Foundation of China (52172040) and China University of Petroleum (East China) Key Project of Undergraduate Teaching Reform.
  • 摘要: 氢能作为一种清洁能源有着广阔的开发前景,利用太阳能进行高效光解水制氢是一种非常有前景的策略。共价三嗪骨架材料(CTFs)在光催化领域中的应用受到了广泛的关注。然而,传统高温离子热合成CTFs所需反应条件苛刻,使得材料失去光响应性,并且设计合成具有高光催化性能的CTFs材料的仍极具挑战。对此我们采用脒基缩聚法在温和条件下合成新型CTFs,通过单体的可控设计从分子水平引入噻吩基团构建D-A结实现光催化产氢性能的提升。本文中,我们成功构筑了三种CTFs(CTF-PP、CTF-PTP以及CTF-TPT),电子供体能力更强的D-A型CTF-TPT光催化产氢活性高达15650 μmol/(g·h),而不含电子供体基团的CTF-PP光催化产氢活性只有6172 μmol/(g·h)。此外,本文通过电化学分析与模拟计算得出噻吩基团和三嗪基团可分别作为有效的电子供体单元和受体单元,通过引入D-A结可以在分子水平上进一步调控CTFs带隙位置并促进电荷分离和传输,进而提高光催化性能。
  • 图  1  分子水平设计D-A结光催化体系示意图

    Figure  1  Molecularly designed schematic diagram of a D-A junction photocatalytic system

    图  2  三种催化剂合成示意图

    Figure  2  Synthesis of three catalystsr

    图  3  CTF-PP, CTF-PTP和CTF-TPT的XRD(a)、 FT-IR谱图(b);CTF-PP , CTF-PTP和CTF-TPT的SEM图像(c, d, e)

    Figure  3  (a) XRD patterns, (b) FT-IR spectra of CTF-PP, CTF-PTP ,CTF-TPT; (c, d, e) SEM images of CTF-PP, CTF-PTP, CTF-TPT

    图  4  PTP在d6-DMSO中1H NMR谱(a)和TPT在CDCl31H NMR谱(b)

    Figure  4  (a) 1H NMR spectra of PTP in d-DMSO; (b) 1H NMR spectra of TPT in CDCl3

    图  5  三种样品的氮气吸附曲线图(a)与XPS谱图C 1s(b),N 1s(c),S 2p(d)

    Figure  5  N2 adsorption-desorption isotherms (a) and XPS spectra of CTF-PP, CTF-TPT and CTF-PTP, high-resolution spectra of C 1s (b), N 1s (c), S 2p (d).

    图  6  CTF-PP、CTF-PTP、CTF-TPT的光解水产氢速率(a)性能对比(b)及CTF-TPT的循环产氢性能(c)

    Figure  6  Hydrogen evolution rates of CTF-PP、CTF-PTP and CTF-TPT (a) , Performance comparison of various COFs catalysts (b) and cycling performance of CTF-TPT (c)

    图  7  CTF-PP、CTF-PTP、CTF-TPT反应前后的UV-vis吸收谱(a)Tauc曲线(b)瞬态FL光谱图(c)及PL光谱I-t曲线(d)

    Figure  7  UV-vis spectrum (a) , Tauc plots (b), Time-resolution FL spectrum (c) and PL spectrum (d) of CTF-PP, CTF-PTP and CTF-TPT photocatalysts

    图  8  CTF-PP、CTF-PTP以及CTF-TPT光催化剂的I-t曲线

    Figure  8  I-t plots of CTF-PP、CTF-PTP and CTF-TPT photocatalysts

    图  9  (a)CTF-PP、(b)CTF-PTP、(c)CTF-TPT及(d)CTFs的 EIS图

    Figure  9  EIS spectra of CTF-PP (a)、CTF-PTP (b)、CTF-TPT (c) and total (d)

    图  10  CTF-PP(a)、CTF-PTP(b)以及CTF-TPT(c)莫特-肖特基(M-S)曲线图,三种CTFs的电位图(d)

    Figure  10  Mott-Schottky plots of CTF-PP(a), CTF-PTP (b), CTF-TPT (c) and potential diagram of total CTFs (d)

    图  11  理论模拟推导出的构建组块的轨道能级图

    Figure  11  Orbital energy level diagram of building block derived from theoretical simulation

  • [1] SU T, SHAO Q, QIN Z, et al. Role of interfaces in two-dimensional photocatalyst for water splitting[J]. ACS Catal,2018,8(3):2253−2276. doi: 10.1021/acscatal.7b03437
    [2] KONSTANTINOS C C, PAOLO F. Photocatalytic hydrogen production: a rift into the future energy supply[J]. ChemCatChem,2017,9:1523−1544. doi: 10.1002/cctc.201601659
    [3] ZHAO C, CHEN Z, SHI R, et al. Recent advances in conjugated polymers for visible-light-driven water splitting[J]. Adv. Mater,2020,32:1907296. doi: 10.1002/adma.201907296
    [4] RAN J, ZHANG J, YU J. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting[J]. Chem. Soc. Rev,2014,43:7787−7812. doi: 10.1039/C3CS60425J
    [5] JIANG C, MONIZ S J A, WANG A, et al. Photoelectrochemical devices for solar water splitting–materials and challenges[J]. Chem Soc Rev,2017,46(15):4645−4660. doi: 10.1039/C6CS00306K
    [6] KIBRIA M, CHOWDHURY F, ZHAO S, et al. Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays[J]. Nat Commun,2015,6:6797. doi: 10.1038/ncomms7797
    [7] QIAN R, ZONG H, JENNY S, et al. Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: an overview[J]. Catalysis Today,2019,335:78−90. doi: 10.1016/j.cattod.2018.10.053
    [8] 张腾, 蒋灶, 杨政鑫, 徐龙君, 刘成伦. ZnxCd1−xS光催化降解垃圾渗滤液及其产氢性能研究[J]. 燃料化学学报(中英文),2022,50(10):1299−1306.

    ZHANG Teng, JIANG Zao, YANG Zhengxin, XU Longjun, LIU Chenglun. ZnxCd1−xS for photocatalytic degradation of landfill leachate and its hydrogen production activity[J]. Journal of Fuel Chemistry and Technology,2022,50(10):1299−1306.
    [9] FU C, WU X, YANG J. Material design for photocatalytic water splitting from a theoretical perspective[J]. Adv. Mater,2018,30(48):1802106. doi: 10.1002/adma.201802106
    [10] ZHOU W, JING Q, LI J, et al. Organic photocatalysts for solar water splitting: molecular- and aggregate-level modifications[J]. Acta Phys. Chim. Sin,2023,39(5):2211010.
    [11] HUSSAIN M Z, VAN DER LINDEN B, YANG Z, et al. Bimetal–organic framework derived multi-heterostructured TiO2/CuxO/C nanocomposites with superior photocatalytic H2 generation performance[J]. Mater. Chem. A,2021,9:4103−4116. doi: 10.1039/D0TA10853G
    [12] WEI C, YI K, SUN G, et al. Synthesis of novel sonocatalyst Er3+: YAlO3/Nb2O5 and its application for sonocatalytic degradation of methamphetamine hydrochloride [ J]. Ultrasonics Sonochemistry, 2018 , 42, 57-67.
    [13] 王丽宝, 王宏浩, 张磊, 等. 柠檬酸量对水热合成CuO/Ce0.8Zr0.2O2催化水气变换制氢性能的影响[J]. 燃料化学学报(中英文),2022,50(3):337−345.

    WANG Libao, WANG Honghao, ZHANG Lei, et al. Effect of citric acid content on the hydrothermal synthesis of CuO/Ce0.8Zr0.2O2 catalytic water gas shift hydrogen production performance[J]. Journal of Fuel Chemistry and Technology,2022,50(3):337−345.
    [14] BHANJA P, MOHANTY B, PATRA A K, et al. IrO2 and Pt doped mesoporous SnO2 nanospheres as efficient electrocatalysts for the facile OER and HER[J]. ChemCatChem,2019,11:583. doi: 10.1002/cctc.201801312
    [15] FANG W, WANG L, LI C. Preparation of Au-OVs-BiOBr-P25 Z-scheme photocatalyst and its photocatalytic performance in overall water splitting[J]. Journal of Fuel Chemistry and Technology,2022,50(4):446−455. doi: 10.1016/S1872-5813(21)60174-3
    [16] KUECKEN S, ACHARJYA A, ZHI L, et al. Fast tuning of covalent triazine frameworks for photocatalytic hydrogen evolution[J]. Chem Commun,2017,53(43):5854−5857. doi: 10.1039/C7CC01827D
    [17] SICK T, HUFNAGEL A G, KAMPMANN J, et al. Oriented films of conjugated 2D covalent organic frameworks as photocathodes for water splitting[J]. J Am Chem Soc,2018,140(6):2085−2092. doi: 10.1021/jacs.7b06081
    [18] BUTCHOSA C, MCDONALD T O, COOPER A I , et al. Shining a light on s-triazine-based polymers [J]. J Phys Chem C 2014 , 118(8): 4314-4324.
    [19] BI J, FANG W, LI L, et al. Covalent triazine-based frameworks as visible light photocatalysts for the splitting of water[J]. Macromol Rapid Commun,2015,36(20):1799−1805. doi: 10.1002/marc.201500270
    [20] KUHN P, FORGET A, SU D, et al. From microporous regular frameworks to mesoporous materials with ultrahigh surface area: dynamic reorganization of porous polymer networks[J]. J Am Chem Soc,2008,130(40):13333−13337. doi: 10.1021/ja803708s
    [21] WANG K, YANG L, WANG X, et al. Covalent triazine frameworks via a low-temperature polycondensation approach[J]. Angew Chem Int Ed,2017,56(45):14149−14153. doi: 10.1002/anie.201708548
    [22] WANG N, CHENG G, GUO L, et al. Hollow covalent triazine frameworks with variable shell thickness and morphology[J]. Adv Funct Mater,2019,29(43):1904781. doi: 10.1002/adfm.201904781
    [23] YANG Q, LUO M, LIU K, et al. Covalent organic frameworks for photocatalytic applications[J]. Appl Catal B,2020,276:119174. doi: 10.1016/j.apcatb.2020.119174
    [24] WANG L, LIU L, LI Y, et al. Molecular-level regulation strategies toward efficient charge separation in donor−acceptor type conjugated polymers for boosted energy-related photocatalysis[J]. Adv. Energy Mater,2024,14:2303346. doi: 10.1002/aenm.202303346
    [25] HUANG W, BYUN J, RÖRICH I, et al. Asymmetric covalent triazine framework for enhanced visible-light photoredox catalysis via energy transfer cascade[J]. Angew Chem Int Ed,2018,57(27):8316−8320. doi: 10.1002/anie.201801112
    [26] ZHU X, TIAN C, MAHURIN S M, et al. A superacid-catalyzed synthesis of porous membranes based on triazine frameworks for CO2 separation[J]. J Am Chem Soc,2012,134(25):10478−10484. doi: 10.1021/ja304879c
    [27] LUO Z, LIN S, TIAN Z, et al. Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property[J]. J Mater Chem,2011,21(22):8038−8044. doi: 10.1039/c1jm10845j
    [28] LV L, WU Z, CHEN L, et al. Precursor-controlled and template-free synthesis of nitrogen-doped carbon nanoparticles for supercapacitors[J]. RSC Adv,2015,5(62):50063−50069. doi: 10.1039/C5RA06697B
    [29] LU H, ZHARNIKOV M. Structure-building forces in biphenyl-substituted alkanethiolate self-assembled monolayers on GaAs(001): the effect of the bending potential[J]. J Phys Chem C,2015,119(49):27401−27409. doi: 10.1021/acs.jpcc.5b07067
    [30] KIM G H, SHAO L, ZHANG K. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency et al.[J]. Nature Mater,2013,12(8):719−723. doi: 10.1038/nmat3635
    [31] LI P, LIU L, AN W, et al. Ultrathin porous g-C3N4 nanosheets modified with AuCu alloy nanoparticles and C−C coupling photothermal catalytic reduction of CO2 to ethanol[J]. Appl Catal B,2020,266:118618 doi: 10.1016/j.apcatb.2020.118618
    [32] BI S, YANG C, ZHANG W, et al. Two-dimensional semiconducting covalent organic frameworks via condensation at arylmethyl carbon atoms[J]. Nature Communications,2019,10(1):2467. doi: 10.1038/s41467-019-10504-6
    [33] WEI S, ZANG F, ZHANG W, et al. Semiconducting 2D triazine-cored covalent organic frameworks with unsubstituted olefin linkages[J]. J Am Chem Soc,2019,141(36):14272−14279. doi: 10.1021/jacs.9b06219
    [34] LUO M, YANG Q, LIU K, et al. Boosting photocatalytic H2 evolution on g-C3N4 by modifying covalent organic frameworks (COFs)[J]. Chem Commun,2019,55(41):5829−5832. doi: 10.1039/C9CC02144B
    [35] LUO M, YANG Q, YANG W, et al. Defects engineering leads to enhanced photocatalytic H2 evolution on graphitic carbon nitride–covalent organic framework nanosheet composite[J]. Small,2020,16(20):2001100. doi: 10.1002/smll.202001100
    [36] HUANG W, HE Q, HU Y, et al. Molecular heterostructures of covalent triazine frameworks for enhanced photocatalytic hydrogen production[J]. Angew Chem Int Ed,2019,58(26):8676−8680. doi: 10.1002/anie.201900046
    [37] XIE J, STEPHEN A S, RUAN Q, et al. Efficient visible light-driven water oxidation and proton reduction by an ordered covalent triazine-based framework[J]. Energy Environ Sci,2018,11(6):1617−1624. doi: 10.1039/C7EE02981K
    [38] GUO L, NIU Y, SHUMAILA R, et al. Design of D–A1–A2 covalent triazine frameworks via copolymerization for photocatalytic hydrogen evolution[J]. ACS Catal,2019,9(10):9438−9445. doi: 10.1021/acscatal.9b01951
    [39] LAN Z, FANG Y, CHEN X, et al. Thermal annealing-induced structural reorganization in polymeric photocatalysts for enhanced hydrogen evolution[J]. Chem Commun,2019,55(54):7756−7759. doi: 10.1039/C9CC02966D
    [40] LIAO L, DANIEL D. , ZENG F, et al. Efficient photocatalytic oxidation of aromatic alcohols over thiophene-based covalent triazine frameworks with a narrow band gap[J]. ChemistrySelect,2020,5(45):14438−14446. doi: 10.1002/slct.202004115
    [41] UMEBAYASHI T, YAMAKI T, ITOH H, et al. Bandgap narrowing of titanium dioxide by nitrogen doping[J]. Appl. Phys. Let,2002,81(3):454−456. doi: 10.1063/1.1493647
    [42] ZHANG L, ZHANG Y, HUANG X, et al. Direct observation of dynamic interfacial bonding and charge transfer in metal-free photocatalysts for efficient hydrogen evolution[J]. Appl Catal B,2021,283:119633. doi: 10.1016/j.apcatb.2020.119633
  • 加载中
图(11)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  26
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-05
  • 修回日期:  2024-05-30
  • 录用日期:  2024-06-05
  • 网络出版日期:  2024-06-19

目录

    /

    返回文章
    返回