留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NaOH(碱)诱导Co/MoO3重构催化氨硼烷水解释氢

张文珂 刘军辉 李冰 李梦婷 李想 许爱荣

张文珂, 刘军辉, 李冰, 李梦婷, 李想, 许爱荣. NaOH(碱)诱导Co/MoO3重构催化氨硼烷水解释氢[J]. 燃料化学学报(中英文). doi: 10.3724/2097-213X.2024.JFCT.0002
引用本文: 张文珂, 刘军辉, 李冰, 李梦婷, 李想, 许爱荣. NaOH(碱)诱导Co/MoO3重构催化氨硼烷水解释氢[J]. 燃料化学学报(中英文). doi: 10.3724/2097-213X.2024.JFCT.0002
ZHANG Wenke, LIU Junhui, LI Bing, LI Mengting, LI Xiang, XU Airong. Co/MoO3 Reconfiguration Induced by NaOH (Alkali) for Hydrogen Generation from Catalytic Hydrolysis of Ammonia Borane[J]. Journal of Fuel Chemistry and Technology. doi: 10.3724/2097-213X.2024.JFCT.0002
Citation: ZHANG Wenke, LIU Junhui, LI Bing, LI Mengting, LI Xiang, XU Airong. Co/MoO3 Reconfiguration Induced by NaOH (Alkali) for Hydrogen Generation from Catalytic Hydrolysis of Ammonia Borane[J]. Journal of Fuel Chemistry and Technology. doi: 10.3724/2097-213X.2024.JFCT.0002

NaOH(碱)诱导Co/MoO3重构催化氨硼烷水解释氢

doi: 10.3724/2097-213X.2024.JFCT.0002
基金项目: 河南省青年科学基金(No. 242300421619)资助
详细信息
    通讯作者:

    E-mail: junhuil@haust.edu.cn

    lixiang@haust.edu.cn

  • 中图分类号: O643.36

Co/MoO3 Reconfiguration Induced by NaOH (Alkali) for Hydrogen Generation from Catalytic Hydrolysis of Ammonia Borane

Funds: The project was supported by Henan Youth Science Foundation(No. 242300421619).
  • 摘要: 催化剂的构效关系是多相催化中研究催化作用机制的关键。本文以MoO3为载体通过液相还原法制备了Co/MoO3催化剂,用于催化氨硼烷水解释氢反应。Co/MoO3催化剂在无NaOH(碱)加入的体系中没有催化活性,不能催化氨硼烷水解释放氢气,而在有NaOH(碱)加入的体系中表现出优异的催化释氢性能。对Co/MoO3催化剂的组成结构在反应前后变化情况的表征分析表明,Co/MoO3催化剂中的组分是Co和Mo的无定形态存在的物质,非晶态的结构导致了在氨硼烷水解释氢反应中没有催化活性。在NaOH(碱)诱导作用下,Co/MoO3催化剂的组成结构由无定形态转变为针状Co(OH)2分散在片状堆叠的MoO3上的结构。NaOH(碱)的诱导重构作用使Co/MoO3催化剂在氨硼烷水解释氢反应中由没有催化活性转变为可以在15 min内使氨硼烷完全脱氢。
  • 图  1  Co/MoO3催化氨硼烷水解释氢曲线

    Figure  1  The curves of H2 produced by AB hydrolysis in the presence of Co/MoO3 catalysts as a function of reaction time

    图  2  Co/MoO3、Co/ZIF-8和Co/BN催化氨硼烷水解释氢曲线,(a)反应体系中无NaOH加入,(b)反应体系中有NaOH加入

    Figure  2  The curves of H2 produced by AB hydrolysis in the presence of Co/MoO3, Co/ZIF-8, and Co/BN catalysts as a function of reaction time. (a) without NaOH, (b) addition of NaOH

    图  3  不同金属氧化物为载体的Co基催化剂的释氢曲线

    Figure  3  The curves of H2 produced by AB hydrolysis in the presence of Co on various metal oxide supporter catalysts as a function of reaction time

    图  4  (a)不同NaOH浓度下Co/MoO3催化释氢曲线,(b) 不同种类碱加入的体系中Co/MoO3催化氨硼烷水解释氢曲线

    Figure  4  The curves of H2 produced by AB hydrolysis in the presence of (a) different concentrations of NaOH as a function of reaction time, (b) different alkali as a function of reaction time

    图  5  加入NaOH的体系中Co/MoO3催化氨硼烷水解释氢循环使用性能图

    Figure  5  Recyclability of Co/MoO3 for AB hydrolysis with addition of NaOH

    图  6  催化剂的XRD图 (a) MoO3和Co/MoO3,(b) Co/InO3,(c) Co/BN,(d) 在加入NaOH的体系中反应后的Co/MoO3

    Figure  6  XRD patterns of (a) MoO3 and Co/MoO3, (b) Co/InO3, (c) Co/BN, (d) Co/MoO3 after reaction with NaOH

    图  7  (a) MoO3载体和(b) Co/MoO3催化剂的SEM照片

    Figure  7  SEM images of (a) MoO3, (b) Co/MoO3

    图  8  Co/MoO3催化剂的(a)−(c)TEM图,(d)−(g)元素映射图

    Figure  8  (a)−(c) TEM images and (d)−(g) elemental mapping images of the as-prepared Co/MoO3 samples

    图  9  经历催化反应(无NaOH加入体系)后的Co/MoO3催化剂样品的(a)−(c)TEM图,(d)−(g)元素映射图

    Figure  9  (a)−(c) TEM images and (d)−(g) elemental mapping images of the used Co/MoO3 (without NaOH)

    图  10  经历催化反应(有NaOH加入)后的Co/MoO3催化剂不同放大倍数的TEM图

    Figure  10  TEM images of the used Co/MoO3 (addition of NaOH)

  • [1] 刘军辉, 郭旭明, 宋亚坤, 等. 催化氨硼烷水解制氢研究进展[J]. 应用化学,2021,38(2):157−169.

    LIU Junjui, GUO Xuming, SONG Yakun, et al. Recent advances in hydrogen generation by catalytic hydrolysis of ammonia borane[J]. Chin J Appl Chem,2021,38(2):157−169.
    [2] MBOYI C D, POINSOT D, Roger J, et al. The hydrogen-storage challenge: Nanoparticles for metal-catalyzed ammonia borane dehydrogenation[J]. Small,2021,17(44):2102759. doi: 10.1002/smll.202102759
    [3] AKBAYRAK S, ÖZKAR S. Ammonia borane as hydrogen storage materials[J]. Int. J. Hydrogen Energy,2018,43(40):18592−18606. doi: 10.1016/j.ijhydene.2018.02.190
    [4] ZHAN W W, ZHU Q L, XU Q. Dehydrogenation of ammonia borane by metal nanoparticle catalysts[J]. ACS Catal,2016,6(10):6892−6905. doi: 10.1021/acscatal.6b02209
    [5] 邹爱华, 林路贺, 周浪, 等. 氨硼烷合成, 表征及金属纳米催化剂水解制氢研究进展[J]. 燃料化学学报 (中英文),2023,51(7):909−920. doi: 10.1016/S1872-5813(23)60347-0

    ZOU Aihua, LIN Luhe ZHOU Lang, et al. Research progress on the synthesis and characterization of ammonia borane and metal nanocatalysts for hydrogen production the hydrolysis of ammonia borane[J]. J Fuel Chem Technol,2023,51(7):909−920. doi: 10.1016/S1872-5813(23)60347-0
    [6] YAO Q, ZHANG X, LU Z, et al. Metal-organic framework-based catalysts for hydrogen production from liquid-phase chemical hydrides[J]. Coord Chem Rev,2023,493:215302. doi: 10.1016/j.ccr.2023.215302
    [7] AKBAYRAK S, OZKAR S. Magnetically isolable Pt0/Co3O4 nanocatalysts: outstanding catalytic activity and high reusability in hydrolytic dehydrogenation of ammonia borane[J]. ACS Appl Mater Interfaces,2021,13(29):34341−34348. doi: 10.1021/acsami.1c08362
    [8] MENG Y, SUN Q, ZHANG T, et al. Cobalt-promoted noble-metal catalysts for efficient hydrogen generation from ammonia borane hydrolysis[J]. J Am Chem Soc,2023,145(9):5486−5495. doi: 10.1021/jacs.3c00047
    [9] ZHAO X, HU H, LI G, et al. Low-temperature control over deposition of ultrafine pd nanoparticles on porous carbon nanosheets for highly efficient dehydrogenation of ammonia borane[J]. J Alloys Compd,2022,912:165076. doi: 10.1016/j.jallcom.2022.165076
    [10] MAO M, CHEN Q, WU J, et al. Anchoring and space-confinement effects to synthesize ultrasmall Pd nanoparticles for efficient ammonia borane hydrolysis[J]. Int J Hydrogen Energy,2020,45(51):27244−27253. doi: 10.1016/j.ijhydene.2020.07.097
    [11] 左佑华, 吴慧, 花俊峰, 等. 层状多孔炭片负载钌催化剂的制备及其催化氨硼烷水解制氢性能研究[J]. 燃料化学学报 (中英文),2024,52(3):1−9.

    ZUO Youhua, WU Hui, HUA Junfeng, et al. Preparation of layered porous carbon supported ruthenium catalyst and its performance for ammonia borane hydrolyzing to hydrogen[J]. J Fuel Chem Technol,2024,52(3):1−9.
    [12] 吴慧, 郑君宁, 左佑华, 等. 稻壳基碳材料负载钌催化剂的制备及其对氨硼烷水解制氢的催化性能[J]. 燃料化学学报 (中英文),2023,51(8):1201−1208. doi: 10.1016/S1872-5813(23)60349-4

    WU Hui, ZHENG Junning, ZUO Youhua, et al. Preparation of rice husk-based carbon supported ruthenium catalyst for the hydrolysis of ammonia borane to produce hydrogen[J]. J Fuel Chem Technol,2023,51(8):1201−1208. doi: 10.1016/S1872-5813(23)60349-4
    [13] 李贵, 梁雨, 郑君宁, 等. Rh/N-GMCs 纳米催化剂的制备及其催化氨硼烷水解产氢性能研究[J]. 燃料化学学报 (中英文),2023,51(4):528−537.

    LI Gui, LIANG Yu, ZHENG Junyu, etal. Preparation of Rh/N-GMCs nanocatalyst and its catalytic performance for the hydrolytic dehydrogenation of ammonia borane[J]. J Fuel Chem Technol,2023,51(4):528−537.
    [14] YUAN M, ZHONG S, Li G, et al. Architecture of urchin-like TiO2 integrated ultrasmall rh nanoparticles with oxygen vacancy-reinforced electronic metal-support interaction for boosting hydrogen production from ammonia borane hydrolysis[J]. Fuel,2024,358:130200. doi: 10.1016/j.fuel.2023.130200
    [15] YAO Q, DING Y, LU Z. Noble-metal-free nanocatalysts for hydrogen generation from boron-and nitrogen-based hydrides[J]. Inorg Chem Front,2020,7(20):3837−3874. doi: 10.1039/D0QI00766H
    [16] XU Q, CHANDRA M. Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia-borane at room temperature[J]. J Power Sources,2006,163(1):364−370. doi: 10.1016/j.jpowsour.2006.09.043
    [17] WANG J, CHEN Y, GUAN S, et al. Tuning Fe doping Co/CoOx amorphous nanofilms to enhance the hydrolytic activity towards ammonia borane[J]. J Alloys Compd,2022,913:165215. doi: 10.1016/j.jallcom.2022.165215
    [18] YU J, ZHAO P, JING H, et al. Double-heterostructured nickel phosphate-phosphides as high-activity electrocatalyst for ammonia borane electrooxidation[J]. Small,2023,19(22):2300387. doi: 10.1002/smll.202300387
    [19] WANG C, REN Y, ZHAO J, et al. Oxygen vacancy-attired dual-active-sites Cu/Cu0. 76Co2. 24O4 drives electron transfer for efficient ammonia borane dehydrogenation [J]. Appl Catal B, 2022, 314: 121494.
    [20] DU J, HOU J, LI B, et al. Support-free 3D hierarchical nanoporous Cu@ Cu2O for fast tandem ammonia borane dehydrogenation and nitroarenes hydrogenation under mild conditions[J]. J Alloys Compd,2020,815:152372. doi: 10.1016/j.jallcom.2019.152372
    [21] LI P, CHEN R, HUANG Y, et al. Activating transition metal via synergistic anomalous phase and doping engineering towards enhanced dehydrogenation of ammonia borane[J]. Appl Catal B,2022,300:120725. doi: 10.1016/j.apcatb.2021.120725
    [22] NUGENT J W, GARCIA M M, Fout A R. Cobalt-catalyzed ammonia borane dehydrogenation: mechanistic insight and isolation of a cobalt hydride-amidoborane complex[J]. Organometallics,2020,39(15):2917−2927. doi: 10.1021/acs.organomet.0c00459
    [23] WANG K, CHEN Y, LI S, et al. Self-reconstructed Co-B active sites for high-efficiency hydrolysis of ammonia borane[J]. ACS Mater Lett,2023,5(4):1188−1195. doi: 10.1021/acsmaterialslett.3c00165
    [24] WANG C, WANG Z, Wang H, et al. Noble-metal-free Co@ Co2P/N-doped carbon nanotube polyhedron as an efficient catalyst for hydrogen generation from ammonia borane[J]. Int J Hydrogen Energy,2021,46(13):9030−9039. doi: 10.1016/j.ijhydene.2021.01.026
    [25] MEHDI S, LIU Y, WEI H, et al. P-induced Co-based interfacial catalysis on ni foam for hydrogen generation from ammonia borane[J]. Appl Catal B,2023,325:122317. doi: 10.1016/j.apcatb.2022.122317
    [26] MEHDI S, LIU Y, WEI H, et al. Co-based nanoparticles fabricated on ni foams for efficient hydrogen generation from ammonia borane[J]. ACS Appl Nano Mater,2022,5(4):5064−5074. doi: 10.1021/acsanm.2c00101
    [27] WU H, WU M, WANG B, et al. Interface electron collaborative migration of Co-Co3O4/carbon dots: Boosting the hydrolytic dehydrogenation of ammonia borane[J]. J Energy Chem,2020,48:43−53. doi: 10.1016/j.jechem.2019.12.023
    [28] 刘林昌, 郭亚君, 朱红林, 等 负载型超细纳米材料催化氨硼烷水解制氢的研究进展 [J]. 应用化学, 2021, 38(11): 1405-1422.

    LIU Linchang, GUO Yajun, ZHU Honglin, et al. Research progress on hydrolyzation of aminoborane catalyzed by supported ultrafine nanomaterials [J]. Chin J Appl Chem, 2021, 38(11): 1405-1422.)
    [29] KANG N, WEI X, SHEN R, et al. Fast Au-Ni@ZIF-8-catalyzed ammonia borane hydrolysis boosted by dramatic volcano-type synergy and plasmonic acceleration[J]. Appl Catal B,2023,320:121957. doi: 10.1016/j.apcatb.2022.121957
    [30] LI W, SHEN Y, DAI L, et al. Strong electronic metal-support interaction augments hydrogen evolution over hcp-Ni/In2O3 with ultrasound-assisting dehydrogenation of ammonia borane[J]. Energy Fuels,2023,37(12):8699−8706. doi: 10.1021/acs.energyfuels.3c00953
    [31] SONG J, WU F, LU Y, et al. F-doped CeO2 supported Co-based nanoparticles for enhanced photocatalytic H2 evolution from ammonia borane[J]. J Hydrogen Energy,2023,48(35):13202−13212. doi: 10.1016/j.ijhydene.2022.12.219
    [32] AKBAYRAK S, TONBUL Y, ÖZKAR S. Ceria supported rhodium nanoparticles: superb catalytic activity in hydrogen generation from the hydrolysis of ammonia borane[J]. Appl Catal B,2016,198:162−170. doi: 10.1016/j.apcatb.2016.05.061
    [33] MENG Y, SUN Q, ZHANG T, et al. Cobalt-promoted noble-metal catalysts for efficient hydrogen generation from ammonia borane hydrolysis[J]. J Am Chem Soc,2023,145(9):5486−5495. doi: 10.1021/jacs.3c00047
    [34] WANG C, ZHAO J, DU X, et al. Hydrogen production from ammonia borane hydrolysis catalyzed by non-noble metal-based materials: A review[J]. J Mater Sci,2021,56:2856−2878. doi: 10.1007/s10853-020-05493-7
    [35] 赵荣琦, 徐林林, 刘通. NiPt/Ti2O3纳米催化剂的制备及其催化水合肼制氢性能研究[J]. 燃料化学学报,2024,52(3):421−428.

    ZHAO Rongqi, XU Linlin, LIU Tong. Preparation of NiPt/Ti2O3 nanocatalyst and its catalytic performance for hydrogen production from hydrazine hydrate[J]. J Fuel Chem Technol,2024,52(3):421−428
    [36] TONBUL Y, AKBAYRAK S, ÖZKAR S. Palladium(0) nanoparticles supported on ceria: Highly active and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane[J]. Int J Hydrogen Energy,2016,41(26):11154−11162. doi: 10.1016/j.ijhydene.2016.04.058
    [37] AKBAYRAK S, TONBUL Y, ÖZKAR S. Tungsten(vi) oxide supported rhodium nanoparticles: highly active catalysts in hydrogen generation from ammonia borane[J]. Int J Hydrogen Energy,2021,46(27):14259−14269. doi: 10.1016/j.ijhydene.2021.01.156
    [38] YAO Q, YANG K, HONG X, et al. Base-promoted hydrolytic dehydrogenation of ammonia borane catalyzed by noble-metal-free nanoparticles[J]. Catal Sci Technol,2018,8(3):870−877. doi: 10.1039/C7CY02365K
    [39] PATEL N, FEMANDES R, MIOTELLO A. Promoting effect of transition metal-doped Co-B alloy catalysts for hydrogen production by hydrolysis of alkaline NaBH4 solution[J]. J Catal,2010,271(2):315−324. doi: 10.1016/j.jcat.2010.02.014
  • 加载中
图(10)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  37
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-08
  • 修回日期:  2024-05-31
  • 录用日期:  2024-06-03
  • 网络出版日期:  2024-06-19

目录

    /

    返回文章
    返回