留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硫掺杂二氧化钛上负载镍纳米颗粒光催化苯乙炔选择性加氢

李新成 王瑞义 冯淑婷 王云伟 郑占丰

李新成, 王瑞义, 冯淑婷, 王云伟, 郑占丰. 硫掺杂二氧化钛上负载镍纳米颗粒光催化苯乙炔选择性加氢[J]. 燃料化学学报(中英文). doi: 10.3724/2097-213X.2024.JFCT.0003
引用本文: 李新成, 王瑞义, 冯淑婷, 王云伟, 郑占丰. 硫掺杂二氧化钛上负载镍纳米颗粒光催化苯乙炔选择性加氢[J]. 燃料化学学报(中英文). doi: 10.3724/2097-213X.2024.JFCT.0003
LI Xincheng, WANG Ruiyi, FENG Shuting, WANG Yunwei, ZHENG Zhanfeng. Photocatalytic selective hydrogenation of phenylacetylene over sulfur-doped TiO2 supported Ni nanoparticles catalyst[J]. Journal of Fuel Chemistry and Technology. doi: 10.3724/2097-213X.2024.JFCT.0003
Citation: LI Xincheng, WANG Ruiyi, FENG Shuting, WANG Yunwei, ZHENG Zhanfeng. Photocatalytic selective hydrogenation of phenylacetylene over sulfur-doped TiO2 supported Ni nanoparticles catalyst[J]. Journal of Fuel Chemistry and Technology. doi: 10.3724/2097-213X.2024.JFCT.0003

硫掺杂二氧化钛上负载镍纳米颗粒光催化苯乙炔选择性加氢

doi: 10.3724/2097-213X.2024.JFCT.0003
基金项目: 国家自然科学基金(22072176)和山西省基础研究计划(20210302123012)资助
详细信息
    通讯作者:

    0351-4040605; E-mail: wangruiyi@sxicc.ac.cn

    wangyunwei@sxicc.ac.cn

    zfzheng@sxicc.ac.cn

  • 中图分类号: O643

Photocatalytic selective hydrogenation of phenylacetylene over sulfur-doped TiO2 supported Ni nanoparticles catalyst

Funds: The project was supported by National Natural Science Foundation of China (22072176) and the Shanxi Science and Technology Department (20210302123012).
  • 摘要: 通过焙烧硫酸氧钛水合物前驱体制备了一系列硫掺杂TiO2负载Ni纳米颗粒催化剂。考察了不同焙烧温度对TiO2表面硫物种含量及光催化苯乙炔选择性加氢反应性能的影响。采用XRD、UV-vis DRS、TEM等技术对催化剂的结构和形貌进行了表征。XPS和原位DRIFTS结果表明,TiO2表面的硫物种向Ni发生电子转移,富电子态的Ni可以促进苯乙烯的脱附;原位DRIFTS结果表明,光照可以促进催化剂表面H2的解离和活化,提高苯乙炔的转化频率。本工作有助于促进对高效高选择性加氢光催化剂的设计和理解。
  • 图  1  TiOSO4·xH2SO4·xH2O的热重曲线

    Figure  1  TG curve of TiOSO4·xH2SO4·xH2O

    图  2  (a)ST-x和(b)Ni/ST-x催化剂的XRD谱图

    Figure  2  XRD patterns of (a) ST-x and (b) Ni/ST-x catalysts

    图  3  (a)ST-x和(b)Ni/ST-x的红外光谱谱图

    Figure  3  FT-IR spectra of (a) ST-x and (b) Ni/ST-x

    图  4  ST-x和Ni/ST-x的漫反射紫外可见光谱谱图

    Figure  4  UV−vis DRS of ST-x and Ni/ST-x

    图  5  (a)ST-x和(b)Ni/ST-x催化剂的氮气吸附-脱附曲线

    Figure  5  N2 sorption isotherms of the prepared catalysts (a) ST-x and (b) Ni/ST-x

    图  6  (a)、(b)ST-600和(c)、(d)Ni/ST-600催化剂的透射电镜图像

    Figure  6  TEM images of (a), (b) ST-600 and (c), (d) Ni/ST-600

    图  7  Ni/ST-x和Ni/TiO2-600的XPS能谱谱图

    Figure  7  The XPS spectra of Ni/ST-x and Ni/TiO2-600

    (a): Ni 2p; (b): S 2p; (c): Ti 2p; (d): O 1s.

    图  8  (a)光照条件和(b)黑暗条件下Ni/ST-600催化苯乙炔加氢的动力学曲线

    Figure  8  Kinetic plots of selective hydrogenation of phenylacetylene over Ni/ST-600 catalysts (a) under light irradiation and (b) in the darkReaction conditions: 20 mg Ni/ST-600 catalyst, 0.1 mmol phenylacetylene, 2 mL i-PrOH, 0.5 W/cm2 LED white, 80 ℃, 1 atm H2.

    图  9  (a)和(b)Ni/ST-600光催化剂对于苯乙炔选择性加氢时光强和波长的影响 (c) Ni/ST-600光催化剂在不同温度、可见光照射和黑暗条件下的苯乙烯产率 (d) TEMPO作为活性氢捕获剂对反应的影响

    Figure  9  (a) and (b) Influence of light intensity and wavelength for Ni/ST-600 in selective hydrogenation of phenylacetylene. (c) Styeren yield of Ni/ST-600 photocatalyst at different temperatures under visible-light irradiation and in the dark. (d) Effect of TEMPO as the hydrogen abstractor on the catalytic activity of the Ni/ST-600 photocatalyst in the hydrogenation of phenylacetyleneReaction conditions: 20 mg catalyst, 0.1 mmol phenylacetylene, 2 mL i-PrOH, 0.5 W/cm2 LED white, 6 h, 80 ℃, 1 atm H2.

    图  10  不同温度下苯乙烯在(a)Ni/TiO2-600和(b)Ni/ST-600表面吸附的原位红外漫反射光谱,(c)光反应和(d)暗反应条件下Ni/ST-600催化剂表面H2活化的原位漫反射傅里叶变换红外光谱谱图

    Figure  10  In situ DRIFTS of styrene absorption over (a) Ni/TiO2-600 and (b) Ni/ST-600 at different temperatures, in situ DRIFTS of the H2 activation process over Ni/ST-600 catalyst under (c) visible light irradiation and (d) in the dark.

    图  11  可见光下Ni/ST-600催化苯乙炔选择性加氢的反应机理

    Figure  11  Proposed reaction mechanism for the selective hydrogenation of phenylacetylene to styrene over Ni/ST-600 catalyst under visible light irradiation

    图  12  Ni/ST-600催化剂稳定性测试

    Figure  12  Reusability test of Ni/ST-600 catalystReaction conditions: 20 mg catalyst, 0.1 mmol phenylacetylene, 2 mL i-PrOH, 0.5 W/cm2 LED white, 6 h, 80 ℃, 1 atm H2.

    表  1  不同催化剂的结构性质

    Table  1  The structural properties of various catalysts

    Entry Sample SBET
    /(m2·g−1)
    Pore volume
    /(cm3·g−1)
    Pore diameter
    /nm
    1 ST-570 71.6 0.15 10.3
    2 ST-600 59.1 0.15 6.9
    3 ST-630 54.1 0.08 6.8
    4 ST-660 48.3 0.05 6.2
    5 Ni/ST-570 63.8 0.08 9.1
    6 Ni/ST-600 52.7 0.07 6.7
    7 Ni/ST-630 42.8 0.05 5.8
    8 Ni/ST-670 40.9 0.05 5.9
    下载: 导出CSV

    表  2  Ni, Ti, C, O and N的元素含量

    Table  2  Elemental content of Ni, Ti, C, O and N measured by XPS

    Entry Catalyst Content/%
    Ni O S Ti
    1 Ni/ST-570 5.35 63.67 3.33 27.65
    2 Ni/ST-600 3.72 64.27 1.43 30.58
    3 Ni/ST-630 3.97 63.97 1.07 30.99
    4 Ni/ST-660 3.89 64.04 0.49 31.58
    下载: 导出CSV

    表  3  不同催化剂对于苯乙炔选择性加氢光催化性能a

    Table  3  Photocatalytic performance of various catalysts for selective hydrogenation

    Entry Catalyst Incident light Conversion/% Selectivit/%
    1 visible 0 0
    dark 0 0
    2 ST-600 visible 0 0
    dark 0 0
    3 Ni/ST-570 visible 52.2 97.2
    dark 16.1 97.6
    4 Ni/ST-600 visible 98.4 97.1
    dark 33.5 97.4
    5 Ni/ST-630 visible 94.2 89.3
    dark 43.1 96.6
    6 Ni/ST-660 visible 100 41.6
    dark 99.2 88.9
    7b Ni/ST-600 visible 0 0
    dark 0 0
    8 Ni/TiO2-600 visible 100 0
    dark 100 27.2
    9 NiO/ST-600 visible 0 0
    dark 0 0
    a: Reaction conditions: 20 mg catalyst, 0.1 mmol phenylacetylene, 2 mL i-PrOH, 0.5 W/cm2 LED white, 6 h, 80 ℃, 1 atm H2; b: 1 atm Ar.
    下载: 导出CSV

    表  4  催化剂用量对于苯乙炔选择性加氢光催化性能的影响

    Table  4  Effect of catalyst usage on the photocatalytic performance of selective hydrogenation of phenylacetylene

    Entry Catalyst mass/mg Incident light Conversion/% Selectivit/%
    1 10 visible 19.4 96.2
    dark 9.5 96.4
    2 20 visible 57.5 97.1
    dark 21.4 96.6
    3 30 visible 98.4 98.1
    dark 33.5 98.4
    4 40 visible 99.5 97.4
    dark 36.7 97.2
    Reaction conditions: 20 mg Ni/ST-600 catalyst, 0.1 mmol phenylacetylene, 2 mL i-PrOH, 0.5 W/cm2 LED white, 6 h, 80 ℃, 1 atm H2.
    下载: 导出CSV
  • [1] ZHANG L, ZHOU M, WANG A, et al. Selective hydrogenation over supported metal catalysts: From nanoparticles to single stoms[J]. Chem Rev,2020,120(2):683−733. doi: 10.1021/acs.chemrev.9b00230
    [2] YANG L, YU S Y, PENG C, et al. Semihydrogenation of phenylacetylene over nonprecious Ni-based catalysts supported on AlSBA-15[J]. J Catal,2019,370:310−320. doi: 10.1016/j.jcat.2019.01.012
    [3] CHERKASOV N, MURZIN D Y, CATLOW C R A, et al. Selectivity of the Lindlar catalyst in alkyne semi-hydrogenation: a direct liquid-phase adsorption study[J]. Catal Sci Technol,2021,11(18):6205−6216. doi: 10.1039/D1CY01016F
    [4] REN Y Y, YANG Y S, WEI M. Recent advances on heterogeneous non-noble metal catalysts toward selective hydrogenation reactions[J]. ACS Catal,2023,13(13):8902−8924. doi: 10.1021/acscatal.3c01442
    [5] 王靖, 王瑞义, 张晋等. 表面等离激元增强Ni/TiO2光催化苯乙炔选择性加氢[J]. 燃料化学学报,2023,51(12):1834−1842.

    WANG Jing, WANG Ruiyi, ZHANG Jin, et al. Plasmon-enhanced photocatalytic selective hydrogenation of phenylacetylene over Ni/TiO2 catalysts[J]. J Fuel Chem Technol,2023,51(12):1834−1842.
    [6] LI C M, CHEN Y D, ZHANG S T, et al. Nickel-gallium intermetallic nanocrystal catalysts in the semihydrogenation of phenylacetylene[J]. ChemCatChem,2014,6(3):824−831. doi: 10.1002/cctc.201300813
    [7] SHI X Z, WEN X, NIE S L, et al. Fabrication of Ni3N nanorods anchored on N-doped carbon for selective semi-hydrogenation of alkynes[J]. J Catal,2020,382:22−30. doi: 10.1016/j.jcat.2019.12.005
    [8] WANG J, WANG M X, LI X C, et al. Bidentate ligand modification strategy on supported Ni nanoparticles for photocatalytic selective hydrogenation of alkynes[J]. Appl Catal B: Environ,2022,313:121449. doi: 10.1016/j.apcatb.2022.121449
    [9] ZHAO X J, ZHOU L Y, ZHANG W Y, et al. Thiol treatment creates selective palladium catalysts for semihydrogenation of internal alkynes[J]. Chem,2018,4(5):1080−1091. doi: 10.1016/j.chempr.2018.02.011
    [10] XIA B, ZHANG Y, SHI B, et al. Photocatalysts for hydrogen evolution coupled with production of value‐added chemicals[J]. Small Methods,2020,4(7):2000063. doi: 10.1002/smtd.202000063
    [11] 王瑞义, 刘欢, 郑占丰. 低温下Pt/Al2O3和Pd/Al2O3光辅助乙二醇水相重整制氢研究[J]. 燃料化学学报,2019,47(12):1486−1494. doi: 10.1016/S1872-5813(19)30060-X

    WANG Ruiyi, LIU Huan, ZHENG Zhanfeng. Low temperature light-assisted hydrogen production from aqueous reforming ethylene glycol over Pt/Al2O3 and Pd/Al2O3 catalysts[J]. J Fuel Chem Technol,2019,47(12):1486−1494. doi: 10.1016/S1872-5813(19)30060-X
    [12] CHEN X, ZHU H-Y, ZHAO J-C, et al. Visible-light-driven oxidation of organic contaminants in air with gold nanoparticle catalysts on oxide supports[J]. Angew Chem Int Ed,2008,120(29):5433−5436. doi: 10.1002/ange.200800602
    [13] BUCHELE S, CHEN Z, FAKO E, et al. Carrier-induced modification of palladium nanoparticles on porous boron nitride for alkyne semi-hydrogenation[J]. Angew Chem Int Ed,2020,59(44):19639−19644. doi: 10.1002/anie.202005842
    [14] LIU W A, LIU J C, LIU X L, et al. Bioinspired hydrophobic single-atom catalyst with flexible sulfur motif for aqueous-phase hydrogenative transformation[J]. ACS Catal,2022,13(1):530−539.
    [15] GAO X Q, LI W C, QIU B, et al. Promotion effect of sulfur impurity in alumina support on propane dehydrogenation[J]. J Energy Chem,2022,70:332−339. doi: 10.1016/j.jechem.2022.02.048
    [16] WANG G W, MENG Z, LIU J W, et al. Promoting effect of sulfur addition on the catalytic performance of Ni/MgAlO catalysts for isobutane dehydrogenation[J]. ACS Catal,2013,3(12):2992−3001. doi: 10.1021/cs400705p
    [17] SOFRONOV D, RUCKI M, DEMIDOV O, et al. Formation of TiO2 particles during thermal decomposition of Ti(NO3)4, TiOF2 and TiOSO4[J]. J Mater Res Technol,2020,9(6):12201−12212. doi: 10.1016/j.jmrt.2020.08.115
    [18] WIJAYA K, PUTRI A R, SUDIONO S, et al. Effectively synthesizing SO4/TiO2 catalyst and its performance for converting ethanol into diethyl ether (DEE)[J]. Catalysts,2021,11(12):1492. doi: 10.3390/catal11121492
    [19] SVENSSON F G, ÖSTERLUND L. One-step synthesis of sulfate-modified titania nanoparticles with surface acidic and sustained photocatalytic properties via solid-state thermolysis of titanyl sulfate[J]. ChemCatChem,2022,14(20):e202200682 doi: 10.1002/cctc.202200682
    [20] WANG D-D, GU X-Y, SHI H-N, et al. Effect of Zn on performance of Ni/SiO2 for hydrodeoxygenation of anisole[J]. J Fuel Chem Technol,2022,50(10):1341−1349. doi: 10.1016/S1872-5813(22)60029-X
    [21] PRATIKA R A, WIJAYA K, TRISUNARYANTI W . Hydrothermal treatment of SO4/TiO2 and TiO2/CaO as heterogeneous catalysts for the conversion of Jatropha oil into biodiesel[J]. J Environ Chem Eng,2021,9(6):106547. doi: 10.1016/j.jece.2021.106547
    [22] BIAN R, AN S, WANG X, et al. Ca2+ doped TiO2 nano-sized polygon plates with oxygen vacancies for photocatalytic hydrogen evolution[J]. Int J Hydrogen Energy,2024,51:787−795.
    [23] GOSWAMI P, GANGULI J N. A novel synthetic approach for the preparation of sulfated titania with enhanced photocatalytic activity[J]. RSC Adv,2013,3(23):8878−8888. doi: 10.1039/c3ra23451g
    [24] WANG Z, HUANG X, JIA Y, et al. Localized surface plasmon resonance-induced bidirectional electron transfer of formic acid adsorption for boosting photocatalytic hydrogen production on Ni/TiO2[J]. Chem Eng J,2024,482:148942. doi: 10.1016/j.cej.2024.148942
    [25] WANG S, YANG J, ZHOU H, et al. Performance of Cu-Mn-Zn/ZrO2 catalysts for methanol synthesis from CO2 hydrogenation: the effect of Zn content[J]. J Fuel Chem Technol,2024,52(3):293−303. doi: 10.1016/S1872-5813(23)60391-3
    [26] LI Q, LIU Y N, WAN Z, et al. Microwave-assisted synthesis of oxygen vacancy associated TiO for efficient photocatalytic nitrate reduction[J]. Chin Chem Lett,2022,33(8):3835−3841. doi: 10.1016/j.cclet.2021.12.025
    [27] LI S, YAO N, FAN L, et al. Supported Ni0@C N catalyst with dual-reaction surfaces: structure-performance relation in the selective hydrogenation of p-chloronitrobenzene[J]. Appl Surf Sci,2022,606:1547865.
    [28] WANG H, LI X, LAN X, et al. Supported ultrafine NiCo bimetallic alloy nanoparticles derived from bimetal–organic frameworks: a highly active catalyst for furfuryl alcohol hydrogenation[J]. ACS Catal,2018,8(3):2121−2128. doi: 10.1021/acscatal.7b03795
    [29] XING Y X, SU Y T, LI L Y, et al. Air-stable and reusable porous silica-supported ultrafine Nix-NiO nanoparticles for semi-hydrogenation of alkynes[J]. Appl Surf Sci,2024,654:159411. doi: 10.1016/j.apsusc.2024.159411
    [30] VARGAS-VILLANUEVA S, TORRES-CERON D A, AMAYA-RONCANCIO S, et al. Study of the incorporation of S in TiO2/SO2-4 coatings produced by PEO process through XPS and DFT[J]. Appl Surf Sci,2022,599:153811. doi: 10.1016/j.apsusc.2022.153811
    [31] HUANG Y, XIONG J, LI Z, et al. Insights into the role of S-Ti-O bond in titanium-based catalyst for photocatalytic CH4 reforming: experimental and DFT exploration[J]. Chem Eng Sci,2024,289:119879. doi: 10.1016/j.ces.2024.119879
    [32] XIAO Q, SARINA S, WACLAWIK E R, et al. Alloying gold with copper makes for a highly selective visible-light photocatalyst for the reduction of nitroaromatics to anilines[J]. ACS Catal,2016,6(3):1744−1753. doi: 10.1021/acscatal.5b02643
    [33] WANG R, LIU H, WANG X, et al. Plasmon-enhanced furfural hydrogenation catalyzed by stable carbon-coated copper nanoparticles driven from metal–organic frameworks[J]. Catal Sci Technol,2020,10(19):6483−6494. doi: 10.1039/D0CY01162B
    [34] WANG Z, WANG H, SHI Y, et al. CuPd alloy decorated SnNb2O6 nanosheets as a multifunctional photocatalyst for semihydrogenation of phenylacetylene under visible light[J]. Chem Eng J,2022,429:132018. doi: 10.1016/j.cej.2021.132018
    [35] ZHAO L, QIN X, ZHANG X, et al. A magnetically separable Pd single-atom catalyst for efficient selective hydrogenation of phenylacetylene[J]. Adv Mater,2022,34(20):e2110455. doi: 10.1002/adma.202110455
    [36] LIU H, CHEN X, LIU S, et al. Catalysts derived from Al–Ni Intermetallic compounds for efficient selective semihydrogenation of phenylacetylene[J]. Ind Eng Chem Res,2024,63(8):3608−3620. doi: 10.1021/acs.iecr.3c04134
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  28
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-31
  • 修回日期:  2024-05-24
  • 录用日期:  2024-05-24
  • 网络出版日期:  2024-06-24

目录

    /

    返回文章
    返回