留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

逆水煤气变换反应机理及催化剂研究进展

李鹏阳 王改荣 牛佳星 王小艾 韩星 张彩东 田志强 李兰杰

李鹏阳, 王改荣, 牛佳星, 王小艾, 韩星, 张彩东, 田志强, 李兰杰. 逆水煤气变换反应机理及催化剂研究进展[J]. 燃料化学学报(中英文). doi: 10.3724/2097-213X.2024.JFCT.0004
引用本文: 李鹏阳, 王改荣, 牛佳星, 王小艾, 韩星, 张彩东, 田志强, 李兰杰. 逆水煤气变换反应机理及催化剂研究进展[J]. 燃料化学学报(中英文). doi: 10.3724/2097-213X.2024.JFCT.0004
LI Pengyang, WANG Gairong, NIU Jiaxing, WANG Xiaoai, HAN Xing, ZHANG Caidong, TIAN Zhiqiang, LI Lanjie. Research progress on mechanism and catalysts for reverse water-gas shift reaction[J]. Journal of Fuel Chemistry and Technology. doi: 10.3724/2097-213X.2024.JFCT.0004
Citation: LI Pengyang, WANG Gairong, NIU Jiaxing, WANG Xiaoai, HAN Xing, ZHANG Caidong, TIAN Zhiqiang, LI Lanjie. Research progress on mechanism and catalysts for reverse water-gas shift reaction[J]. Journal of Fuel Chemistry and Technology. doi: 10.3724/2097-213X.2024.JFCT.0004

逆水煤气变换反应机理及催化剂研究进展

doi: 10.3724/2097-213X.2024.JFCT.0004
基金项目: 京津冀基础研究合作专项(E2021318022)资助
详细信息
    通讯作者:

    Tel: 15003240721, E-mail: lilanjie@hbisco.com

  • 中图分类号: TQ511;O643.36

Research progress on mechanism and catalysts for reverse water-gas shift reaction

Funds: The project was supported by Beijing-Tianjin-Hebei Basic Research Cooperation Special Project(E2021318022).
  • 摘要: 逆水煤气变换(RWGS)反应是降低碳排放和实现碳资源利用的有效途径。CO2经逆水煤气变换反应转化为CO,并通过费托工艺制得烯烃化产品和醇类燃料,对于改善环境以及改变未来能源结构具有重大意义。本工作首先总结了RWGS反应机理,依据CO2转化为CO路径中H2是否直接参还原反应,分为氧化还原机理和缔合机理,其中缔合机理包括甲酸盐、羧酸盐以及碳酸盐三种路径,并介绍了近年来关于RWGS反应机理研究的最新发现;其次综述了RWGS反应中的CO2和H2共进料热催化转化催化剂体系和化学循环催化剂体系的研究进展,分析讨论了Pt、Ni、Cu等金属基催化剂和金属碳化物、磷化物催化材料的RWGS反应性能,以及钙钛矿型储氧材料(OSM)在化学循环反应中的应用。最后,针对目前存在的问题和未来可能的解决方案进行了讨论与展望,以期为后续RWGS催化材料的研究提供一定的借鉴。
  • 图  1  Cu/ZrO2、CuIn/ZrO2、Cu/CeO2和CuIn/CeO2催化剂上RWGS反应机理示意图[19]

    Figure  1  Schematic diagram of RWGS mechanism on Cu/ZrO2, CuIn/ZrO2, Cu/CeO2 and CuIn/CeO2[19](With permission from American Chemical Society).

    图  2  RWGS在c-In2O3表面上的反应机理[23]

    Figure  2  RWGS mechanism on c-In2O3[23](With permission from American Chemical Society).

    图  3  nCuAlFe催化剂的RWGS活性与[kr]350 °C×Nsr的线性趋势图[24]

    Figure  3  Linear trend plot of RWGS activities of nCuAlFe vs [kr]350 °C×Nsr[24](With permission from American Chemical Society).

    图  4  基面上的三重S空位(a)和Mo边缘的桥式S空位(b)的CO加氢途径示意图[27]

    Figure  4  Schematic hydrogenation pathways using threefold S vacancies on basal plane (a) and bridge S vacancy on Mo edge (b)[27] (with permission from Elsevier)

    表  1  金属基催化剂上的RWGS反应机理

    Table  1  Reaction mechanisms of RWGS on metal-based catalysts

    氧化还原路径[7] 甲酸盐缔合路径[11,18] 羧酸盐缔合路径[11,18] 碳酸盐缔合路径[19]
    H2(g)+2*→2*H
    CO2(g)+*→*CO2
    *CO2+*→*CO+*O
    *O+*H→*OH+*
    *OH+*H→*H2O+*
    *H2O→*+H2O(g)
    *CO→*+CO(g)
    H2(g)+2*→2*H
    CO2(g)+*→*CO2
    *H+*CO2→*HCOO+*
    *HCOO+*→*HCO+*O
    *HCO→*CO+*H
    *H+*O→*OH+*
    *H+*OH→*H2O+*
    *H2O→*+H2O(g)
    *CO→*+CO(g)
    H2(g)+2*→2*H
    CO2(g)+*→*CO2
    *CO2+*H→*COOH+*
    *COOH+*→*COH+*O
    *COH+*→*CO+*H
    *H+*O→*OH+*
    *H+*OH→*H2O
    *H2O→*+H2O(g)
    *CO→*+CO(g)
    H2(g)+2*→2*H
    CO2(g)+*O→*CO3
    2*H+*CO3→*HCOO+*OH
    *OH→*H+O
    *H+*HCOO→*H2O+*CO
    *H2O→*+H2O(g)
    *CO→*+CO(g)
    注:(“*”表示活性位点,“*X”表示吸附种类)
    下载: 导出CSV

    表  2  RWGS反应机理研究的最新发现

    Table  2  Recent findings on RWGS reaction mechanism

    CatalystMechanistic FindingsRef
    Pt/TiO2催化剂金属粒径可控制RWGS反应中CO2加氢的途径,导致不同产物选择性[21]
    CuxInx/M
    (M=ZrO2,CeO2)
    活性位点和载体间的协同效应决定了CO2加氢反应途径,以及反应中间体的形成[19]
    c-In2O3催化活性依赖于催化剂的晶体结构,并受其表面氧排列的影响[23]
    KnCuAlFe反应机理取决于活性位点的性质,氧化还原机理利用氧空位位点,而缔合机理可以同时利用氧空位和表面碱性位点作为活性位点[24]
    K2O-Fe3O4由于电荷转移调控的电子效应,表面碱度的增加可促进CO2激活机制从氧化还原到缔合性的转变[25]
    MoS2通过调整硫的空位类型,可以提高催化活性,改变CO2加氢反应途径[27]
    VCx表面碳空位的存在对催化性能有实质性影响,包括活性和稳定性[59]
    下载: 导出CSV

    表  3  CO2和H2共进料热催化转化催化剂的反应性能

    Table  3  Reaction performance of catalysts of thermocatalytic conversion via CO2 and H2 co-feeding

    Catalyst Temperature
    /℃
    CO2∶H2 Ratio GHSV
    /(mL·g·h−1)
    CO2 Conversion
    /%
    CO Selectivity
    /%
    Ref
    Pt/CeO2 450 1∶3 43200 35 98 [29]
    Pt/NaZSM-5(Si/Al=15) 400 1∶3 8000 32 86 [30]
    Pt/NaZSM-5(Si/Al=100) 17 100
    PtRe/SiO2 400 1∶4 30000 24 97 [31]
    Pt-Fe/CeO2 380 1∶3 192000 31.6 100 [32]
    Ni/CeO2-CaO 650 62 100 [33]
    Ni/Ga2O3/Al2O3 450 1∶4 15000 38.9 97.4 [34]
    NiCu/皂石 500 1∶4 15000 53 89 [35]
    Ni75Cu25/Al2O3 550 1∶1 192000 38 94 [37]
    Ni-Mo/SiO2 400 1∶4 50000 23.6 93.8 [38]
    NiAlIn3 500 1∶4 30000 50.7 99.8 [39]
    Cu-Al尖晶石 400 1∶5 9.4 100 [41]
    Cu/β-Mo2C 600 1∶1 6000 51 100 [43]
    15Cu/CeO2 600 1∶3 400000 60 100 [45]
    CuIn/ZrO2 600 1∶4 3000 48 100 [46]
    Cu/CeO2 68 100
    MoO3/Ti3AlC2 550 1∶4 15000 22 92 [47]
    Au/TiO2 350 1∶3 3500 16.2 99.9 [48]
    CeO2 600 1∶4 5000 66 100 [53]
    LN-CeO2-100 700 1∶4 18000 54 100 [54]
    Cu/β-Mo2C 600 1∶2 300000 40 99.2 [58]
    WC 350 1∶3 3636 24.3 88 [59]
    K-WC 20.3 98.1
    V8C7 600 1∶3 3000 45 100 [60]
    碳化Mo/CNTs 500 1∶2 36000 38.08 96.57 [61]
    氮化Mo/CNTs 39.61 98.58
    Fe3O4→Fe3C 600 1∶2 300000 35 >99% [62]
    Pt/Fe3O4→Pt/Fe3C 500 1∶3 576000 35 99.5 [63]
    Ni12P5/SiO2 600 1∶4 36000 36.8 100 [64]
    Ni12P5@SBA-15 51.6 99.6
    Ni12P5-Al2O3 600 1∶4 12000 59.3 36.7 [65]
    Ni12P5-SiO2 49.8 88.3
    Ni12P5-CeAl 63.1 51.8
    Ni12P5-SiO2 600 1∶4 6000 44.8 91.8 [66]
    Ni2P-SiO2 24.7 96.9
    下载: 导出CSV

    表  4  RWGS化学循环催化剂的反应性能

    Table  4  Catalytic performance of chemical looping catalysts for RWGS.

    Catalyst Temp.
    /℃
    H2 flow
    /(mL·min−1)
    Time
    /min
    H2 Conc.
    /%
    Temp.
    /℃
    GHSV
    /(mL·(g·h)−1)
    CO2 Conc.
    /%
    CO Yield
    /(mmol·g−1)
    Ref
    La0.75Sr0.25FeO3/
    SBA-15
    700 50 20 10 700 40000 10 3.36 [69]
    La0.5Ba0.5FeO3/
    SiO2
    550 50 10 500 6000 10 2.45 [70]
    Fe2O3-LaFeO3 477 50 20 20 477 30000 20 12.3 [72]
    Sr2FeMo0.6Ni0.4O6-δ 850 500 5 2.7 850 750000 20 1.5 [73]
    Co3O4-NiO@LSF 600 50 20 10 600 30000 10 1.68 [74]
    Co3O4@LSF 600 50 20 10 600 30000 10 1.49 [74]
    Fe0.35Ni0.65Ox 500 20 500 1.26 [75]
    Cu-In2O3 500 100 30 10 500 10 4.8 [76]
    下载: 导出CSV
  • [1] 王晓月, 张伟敏, 姚正阳, 等. 逆水煤气变换反应研究进展[J]. 化工进展,2023,42(3):1583−1594.

    WANG Xiaoyue, ZHANG Weimin, YAO Zhengyang, et al. Research progress of reverse water gas shift reaction[J]. Chem Ind Eng Pro,2023,42(3):1583−1594.
    [2] LIU Z, DENG Z, DAVIS S, et al. Monitoring global carbon emissions in 2022[J]. Nat Rev Earth Env,2023,4(4):205−206. doi: 10.1038/s43017-023-00406-z
    [3] JAIN A K. Global carbon budget 2022[J]. Earth Sys Sci Data,2022,14(11):4811−4900. doi: 10.5194/essd-14-4811-2022
    [4] PAPALAS T, ANTZARAS A N, LEMONIDOU A A. Magnesite-derived MgO promoted with molten salts and limestone as highly-efficient CO2 sorbent[J]. J CO2 Util,2021,53:101725. doi: 10.1016/j.jcou.2021.101725
    [5] SHI X, XIAO H, AZARABADI H, et al. Sorbents for the direct capture of CO2 from ambient air[J]. Angew Chem Int Edit,2020,59(18):6984−7006. doi: 10.1002/anie.201906756
    [6] SAMANTA S, SRIVASTAVA R. Catalytic conversion of CO2 to chemicals and fuels: The collective thermocatalytic/photocatalytic/electrocatalytic approach with graphitic carbon nitride[J]. Mater Adv,2020,1(6):1506−1545. doi: 10.1039/D0MA00293C
    [7] JANGAM A, DAS S, DEWANGAN N, et al. Conversion of CO2 to C1 chemicals: catalyst design, kinetics and mechanism aspects of the reactions[J]. Catal Today,2020,358:3−29. doi: 10.1016/j.cattod.2019.08.049
    [8] CHEN X, SU X, LIANG B, et al. Identification of relevant active sites and a mechanism study for reverse water gas shift reaction over Pt/CeO2 catalysts[J]. J Energy Chem,2016,25(6):1051−1057. doi: 10.1016/j.jechem.2016.11.011
    [9] ADELUNG S, MAIER S, DIETRICH R U. Impact of the reverse water-gas shift operating conditions on the Power-to-Liquid process efficiency[J]. Sustain Energy Techn,2021,43:100897.
    [10] BOWN R M, JOYCE M, ZHANG Q, et al. Identifying commercial opportunities for the reverse water gas shift reaction[J]. Energy Technol,2021,9(11):2100554. doi: 10.1002/ente.202100554
    [11] CHEN X, CHEN Y, SONG C, et al. Recent advances in supported metal catalysts and oxide catalysts for the reverse water-gas shift reaction[J]. Front Chem,2020,8:709. doi: 10.3389/fchem.2020.00709
    [12] MAITI D, HARE B J, DAZA Y A, et al. Earth abundant perovskite oxides for low temperature CO2 conversion[J]. Energy Environ Sci,2018,11(3):648−659. doi: 10.1039/C7EE03383D
    [13] ZHU M, GE Q, ZHU X. Catalytic reduction of CO2 to CO via reverse water gas shift reaction: Recent advances in the design of active and selective supported metal catalysts[J]. Trans Tianjin Univ,2020,26:172−187. doi: 10.1007/s12209-020-00246-8
    [14] 黄艳, 王贵文, 杨龙, 等. CO2催化加氢制备C1产物的反应路径与催化剂研究进展[J] 低碳化学与化工, 2024, 49(03): 1-8.

    HUANG Yan, WANG Guilong, YANG Long, et al. Research progress in reaction pathways and catalysts of CO2 catalytic hydrogenation to prepare C1 products[J]. Low-carbon Chem Chem Eng, 2024, 49(03): 1-8.)
    [15] MINE S, YAMAGUCHI T, TING K W, et al. Reverse water-gas shift reaction over Pt/MoOx/TiO2: Reverse Mars-van Krevelen mechanism via redox of supported MoOx[J]. Catal Sci Technol,2021,11(12):4172−4180. doi: 10.1039/D1CY00289A
    [16] BAHMANPOUR A M, SIGNORILE M, KROCHER O. Recent progress in syngas production via catalytic CO2 hydrogenation reaction[J]. Appl Catal B Environ,2021,295:120319. doi: 10.1016/j.apcatb.2021.120319
    [17] KIM S S, LEE H H, HONG S C. A study on the effect of support's reducibility on the reverse water-gas shift reaction over Pt catalysts[J]. Appl Catal A-Gen,2012,423:100−107.
    [18] FORNERO E L, CHIAVASSA D L, BONIVARDI A L, et al. Transient analysis of the reverse water gas shift reaction on Cu/ZrO2 and Ga2O3/Cu/ZrO2 catalysts[J]. J CO2 Util,2017,22:289−298. doi: 10.1016/j.jcou.2017.06.002
    [19] LI M, PHAM T H, KO Y, et al. Support-dependent Cu-In bimetallic catalysts for tailoring the activity of reverse water gas shift reaction[J]. Acs Sustainable Chem Eng,2022,10(4):1524−1535. doi: 10.1021/acssuschemeng.1c06935
    [20] WU H C, CHANG Y C, WU J H, et al. Methanation of CO2 and reverse water gas shift reactions on Ni/SiO2 catalysts: the influence of particle size on selectivity and reaction pathway[J]. Catal Sci Technol,2015,5(8):4154−4163. doi: 10.1039/C5CY00667H
    [21] CHEN X, SU X, DUAN H, et al. Catalytic performance of the Pt/TiO2 catalysts in reverse water gas shift reaction: Controlled product selectivity and a mechanism study[J]. Catal Today,2017,281:312−318. doi: 10.1016/j.cattod.2016.03.020
    [22] SHI Z, TAN Q, TIAN C, et al. CO2 hydrogenation to methanol over Cu-In intermetallic catalysts: Effect of reduction temperature[J]. J Catal,2019,379:78−89. doi: 10.1016/j.jcat.2019.09.024
    [23] WANG J, LIU C Y, SENFTLE T P, et al. Variation in the In2O3 crystal phase alters catalytic performance toward the reverse water gas shift reaction[J]. ACS Catal,2019,10(5):3264−3273.
    [24] GU M, DAI S, QIU R, et al. Structure-activity relationships of copper-and potassium-modified iron oxide catalysts during reverse water-gas shift reaction[J]. ACS Catal,2021,11(20):12609−12619. doi: 10.1021/acscatal.1c03792
    [25] TIAN P, GU M, QIU R, et al. Tunable carbon dioxide activation pathway over iron oxide catalysts: effects of potassium[J]. In Eng Chem Res,2021,60(24):8705−8713. doi: 10.1021/acs.iecr.1c01592
    [26] LOILAND J A, WULFERS M J, MARINKOVIC N S, et al. Fe/γ-Al2O3 and Fe-K/γ-Al2O3 as reverse water-gas shift catalysts[J]. Catal Sci Technol,2016,6(14):5267−5279. doi: 10.1039/C5CY02111A
    [27] SU H Y, SUN K, LIU J X, et al. Bridge sulfur vacancies in MoS2 catalyst for reverse water gas shift: A first-principles study[J]. Appl Surf Sci,2021,561:149925. doi: 10.1016/j.apsusc.2021.149925
    [28] MATHEW T, SAJU S, RAVEENDRAN S N. Survey of heterogeneous catalysts for the CO2 reduction to CO via reverse water gas shift[J]. Eng Solutions CO2 Conv, 2021: 281-316.
    [29] ZHAO Z, WANG M, MA P, et al. Atomically dispersed Pt/CeO2 catalyst with superior CO selectivity in reverse water gas shift reaction[J]. Appl Catal B Environ,2021,291:120101. doi: 10.1016/j.apcatb.2021.120101
    [30] SEO J C, PARK G, ARSHAD M W, et al. Active and selective reverse water-gas shift reaction over Pt/Na-Zeolite catalysts[J]. J CO2 Util,2022,66:102291. doi: 10.1016/j.jcou.2022.102291
    [31] LIU Y, LI L, ZHANG R, et al. Synergetic enhancement of activity and selectivity for reverse water gas shift reaction on Pt-Re/SiO2 catalysts[J]. J CO2 Util,2022,63:102128. doi: 10.1016/j.jcou.2022.102128
    [32] WANG H, BOOTHARAJU M S, KIM J H, et al. Synergistic interactions of neighboring platinum and iron atoms enhance reverse water-gas shift reaction performance[J]. J Am Chem Soc,2023,145(4):2264−2270. doi: 10.1021/jacs.2c10435
    [33] SUN S, ZHANG C, GUAN S, et al. Ni/support-CaO bifunctional combined materials for integrated CO2 capture and reverse water-gas shift reaction: Influence of different supports[J]. Sep Purif Technol,2022,298:121604. doi: 10.1016/j.seppur.2022.121604
    [34] GONG J, CHU M, GUAN W, et al. Regulating the interfacial synergy of Ni/Ga2O3 for CO2 hydrogenation toward the reverse water-gas shift reaction[J]. In Eng Chem Res,2021,60(26):9448−9455. doi: 10.1021/acs.iecr.0c05495
    [35] NITYASHREE N, PRICE C A H, PASTOR-PEREZ L, et al. Carbon stabilised saponite supported transition metal-alloy catalysts for chemical CO2 utilisation via reverse water-gas shift reaction[J]. Appl Catal B Environ,2020,261:118241. doi: 10.1016/j.apcatb.2019.118241
    [36] ANG M L, MILLER J T, CUI Y, et al. Bimetallic Ni-Cu alloy nanoparticles supported on silica for the water-gas shift reaction: activating surface hydroxyls via enhanced CO adsorption[J]. Catal Sci Technol,2016,6(10):3394−3409. doi: 10.1039/C5CY01885D
    [37] GIORIA E, INGALE P, POHL F, et al. Boosting the performance of Ni/Al2O3 for the reverse water gas shift reaction through formation of CuNi nanoalloys[J]. Catal Sci Technol,2022,12(2):474−487. doi: 10.1039/D1CY01585K
    [38] ZHANG R, WEI A, ZHU M, et al. Tuning reverse water gas shift and methanation reactions during CO2 reduction on Ni catalysts via surface modification by MoOx[J]. J CO2 Util,2021,52:101678. doi: 10.1016/j.jcou.2021.101678
    [39] GUO J, WANG Z, LI J, et al. In-Ni intermetallic compounds derived from layered double hydroxides as efficient catalysts toward the reverse water gas shift reaction[J]. ACS Catal,2022,12(7):4026−4036. doi: 10.1021/acscatal.2c00671
    [40] CHEN C S, CHENG W H, LIN S S. Enhanced activity and stability of a Cu/SiO2 catalyst for the reverse water gas shift reaction by an iron promoter[J]. Chem Commun,2001,(18):1770−1771. doi: 10.1039/b104279n
    [41] BAHMANPOUR A M, HEROGUEL F, KIHC M, et al. Essential role of oxygen vacancies of Cu-Al and Co-Al spinel oxides in their catalytic activity for the reverse water gas shift reaction[J]. Appl Catal B Environ,2020,266:118669. doi: 10.1016/j.apcatb.2020.118669
    [42] BAHMANPOUR A M, HEROGUEL F, KIHC M, et al. Cu-Al spinel as a highly active and stable catalyst for the reverse water gas shift reaction[J]. ACS Catal,2019,9(7):6243−6251. doi: 10.1021/acscatal.9b01822
    [43] 张译文, 戴咏川, 么志伟, 等. 程序升温碳化法一步合成Cu/β-Mo2C催化剂及其RWGS反应性能研究[J]. 低碳化学与化工,2023,48(4):23−28. doi: 10.12434/j.issn.2097-2547.20230071

    ZHANG Yiwen, DAI Yongchuan, YAO Zhiwei, et al. One step synthesis of Cu/β-Mo2C catalyst by temperature programmed carbonization method and its performance in RWGS reaction[J]. Low-carbon Chem Chem Eng,2023,48(4):23−28. doi: 10.12434/j.issn.2097-2547.20230071
    [44] LIU Y, DING J, BI J, et al. Effect of Cu-doping on the structure and performance of molybdenum carbide catalyst for low-temperature hydrogenation of dimethyl oxalate to ethanol[J]. Appl Catal A-Gen,2017,529:143−155. doi: 10.1016/j.apcata.2016.11.009
    [45] LIU H X, LI S Q, WANG W W, et al. Partially sintered copper-ceria as excellent catalyst for the high-temperature reverse water gas shift reaction[J]. Nat Commun,2022,13(1):867. doi: 10.1038/s41467-022-28476-5
    [46] LI M, PHAM T H, KO Y, et al. Support-dependent Cu-In bimetallic catalysts for tailoring the activity of reverse water gas shift reaction[J]. Acs Sustainable Chem Eng,2022,10(4):1524−1535. doi: 10.1021/acssuschemeng.1c06935
    [47] RONDA-LLORET M, YANG L, HAMMERTON M, et al. Molybdenum Oxide Supported on Ti3AlC2 is an Active Reverse Water-Gas Shift Catalyst[J]. ACS Sustainable Chem Eng,2021,9(14):4957−4966. doi: 10.1021/acssuschemeng.0c07881
    [48] RABEE A I, ZHAO D, CISNEROS S, et al. Role of interfacial oxygen vacancies in low-loaded Au-based catalysts for the low-temperature reverse water gas shift reaction[J]. Appl Catal B Environ,2023,321:122083. doi: 10.1016/j.apcatb.2022.122083
    [49] 李永强, 朱华星. 铈基氧化物用于VOCS催化燃烧的研究进展[J]. 重庆工商大学学报(自然科学版),2016,33(2):1−5.

    LI Yongqiang, ZHU Xinghua. Research progress in ceria based oxides for catalytic combustion of volatile organic compounds[J]. J Chongqing Technol Business Univ(Nat Sci Ed),2016,33(2):1−5.
    [50] BULFIN B, LOWE A J, KEOGH K A, et al. Analytical model of CeO2 oxidation and reduction[J]. J Phys Chem C,2013,117(46):24129−24137. doi: 10.1021/jp406578z
    [51] CHEN L, FLEMING P, MORRIS V, et al. Size-related lattice parameter changes and surface defects in ceria nanocrystals[J]. J Phys Chem C,2010,114(30):12909−12919. doi: 10.1021/jp1031465
    [52] KOVACEVIC M, MOJET B L, VAN OMMEN J G, et al. Effects of morphology of cerium oxide catalysts for reverse water gas shift reaction[J]. Catal Lett,2016,146:770−777. doi: 10.1007/s10562-016-1697-6
    [53] IQBAL M W, YU Y, SIMAKOV D S A. Enhancing the surface area stability of the cerium oxide reverse water gas shift nanocatalyst via reverse microemulsion synthesis[J]. Catal Today,2023,407:230−243. doi: 10.1016/j.cattod.2021.11.029
    [54] LU B, ZHANG T, ZHANG L, et al. Promotion effects of oxygen vacancies on activity of Na-doped CeO2 catalysts for reverse water gas shift reaction[J]. Appl Surf Sci,2022,587:152881. doi: 10.1016/j.apsusc.2022.152881
    [55] CAO F, XIAO Y, ZHANG Z, et al. Influence of oxygen vacancies of CeO2 on reverse water gas shift reaction[J]. J Catal,2022,414:25−32. doi: 10.1016/j.jcat.2022.08.021
    [56] POROSOFF M D, KATTEL S, LI W, et al. Identifying trends and descriptors for selective CO2 conversion to CO over transition metal carbides[J]. Chem Commun,2015,51(32):6988−6991. doi: 10.1039/C5CC01545F
    [57] ZHANG X, ZHU X, LIN L, et al. Highly dispersed copper over β-Mo2C as an efficient and stable catalyst for the reverse water gas shift (RWGS) reaction[J]. ACS Catal,2017,7(1):912−918. doi: 10.1021/acscatal.6b02991
    [58] MORSE J R, JUNEAU M, BALDWIN J W, et al. Alkali promoted tungsten carbide as a selective catalyst for the reverse water gas shift reaction[J]. J CO2 Util,2020,35:38−46. doi: 10.1016/j.jcou.2019.08.024
    [59] PAJARES A, PRATS H, ROMERO A, et al. Critical effect of carbon vacancies on the reverse water gas shift reaction over vanadium carbide catalysts[J]. Appl Catal B Environ,2020,267:118719. doi: 10.1016/j.apcatb.2020.118719
    [60] RONG Q, DING W, LIU G, et al. First comparison of catalytic CO2 reduction to CO over molybdenum carbide, nitride and phosphide catalysts[J]. Catal Sci Technol,2023,13(22):6360−6365. doi: 10.1039/D3CY00979C
    [61] LIU Y, MURTHY P R, ZHANG X, et al. Phase transformation of iron oxide to carbide and Fe3C as an active center for the RWGS reaction[J]. New J Chem,2021,45(47):22444−22449. doi: 10.1039/D1NJ04120G
    [62] CHEN H, ZHAO Z, WANG G, et al. Dynamic phase transition of iron Oxycarbide facilitated by Pt nanoparticles for promoting the reverse water gas shift reaction[J]. ACS Catal,2021,11(23):14586−14595. doi: 10.1021/acscatal.1c03772
    [63] BAO S, LIU T, FU H, et al. Ni12P5 Confined in Mesoporous SiO2 with Near-Unity CO Selectivity and Enhanced Catalytic Activity for CO2 Hydrogenation[J]. ACS Appl Mater Inter,2023,15(39):45949−45959. doi: 10.1021/acsami.3c12413
    [64] ZHANG Q, PASTOR-PEREZ L, VILLORA-PICO J J, et al. Ni-Phosphide catalysts as versatile systems for gas-phase CO2 conversion: impact of the support and evidences of structure-sensitivity[J]. Fuel,2022,323:124301. doi: 10.1016/j.fuel.2022.124301
    [65] HAMEED G, GOKSU A, MERKOURI L P, et al. Experimental optimization of Ni/P atomic ratio for nickel phosphide catalysts in reverse water-gas shift[J]. J CO2 Util,2023,77:102606. doi: 10.1016/j.jcou.2023.102606
    [66] PENA M A, FIERRO J L. Chemical structures and performance of perovskite oxides[J]. Chem Rev,2001,101(7):1981−2017. doi: 10.1021/cr980129f
    [67] SHI H, BHETHANABOTLA V R, KUHN J N. Role of Ba in low temperature thermochemical conversion of carbon dioxide with LaFeO3 perovskite oxides[J]. J CO2 Util,2021,51:101638. doi: 10.1016/j.jcou.2021.101638
    [68] CASTELLANOS-BELTRAN I J, PERREAULT L S, BRIDY N. Application of Ni-spinel in the chemical-looping conversion of CO2 to CO via induction-generated oxygen vacancies[J]. J Phys Chem C,2021,125(13):7213−7226. doi: 10.1021/acs.jpcc.1c00928
    [69] BROWER J C, HARE B J, BHETHANABOTLA V R, et al. Mesoporous silica supported perovskite oxides for low temperature thermochemical CO2 conversion[J]. ChemCatChem,2020,12(24):6317−6328. doi: 10.1002/cctc.202001216
    [70] SHI H, BHETHANABOTLA V R, KUHN J N. Pelletized SiO2-supported La0.5Ba0.5FeO3 for conversion of CO2 to CO by a reverse water-gas shift chemical looping process[J]. J Ind Eng Chem,2023,118:44−52. doi: 10.1016/j.jiec.2022.10.038
    [71] SHAFIEFARHOOD A, GALINSKY N, HUANG Y, et al. Fe2O3@LaxSr1-xFeO3 core-shell redox catalyst for methane partial oxidation[J]. ChemCatChem,2014,6(3):790−799. doi: 10.1002/cctc.201301104
    [72] LEE M, KIM Y, LIM H S, et al. Low temperature CO2 conversion facilitated by the preserved morphology of metal oxide-perovskite composite[J]. Chem Eng J,2022,437:135151. doi: 10.1016/j.cej.2022.135151
    [73] ORSINI F, FERRERO D, CANNONE S F, et al. Exsolution-enhanced reverse water-gas shift chemical looping activity of Sr2FeMo0. 6Ni0.4O6-δ double perovskite[J]. Chem Eng J,2023,475:146083. doi: 10.1016/j.cej.2023.146083
    [74] LEE M, KIM Y, LIM H S, et al. Reverse water-gas shift chemical looping using a core-shell structured perovskite oxygen carrier[J]. Energies,2020,13(20):5324. doi: 10.3390/en13205324
    [75] ROJAS J, SUN E, WAN G, et al. Iron-Poor Ferrites for Low-Temperature CO2 Conversion via Reverse Water-Gas Shift Thermochemical Looping[J]. ACS Sustainable Chem Eng,2022,10(37):12252−12261. doi: 10.1021/acssuschemeng.2c03196
    [76] MAKIURA J I, HIGO T, KUROSAWA Y, et al. Fast oxygen ion migration in Cu-In-oxide bulk and its utilization for effective CO2 conversion at lower temperature[J]. Chem Sci,2021,12(6):2108−2113. doi: 10.1039/D0SC05340F
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  19
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-17
  • 修回日期:  2024-06-13
  • 录用日期:  2024-06-14
  • 网络出版日期:  2024-07-03

目录

    /

    返回文章
    返回