留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mo-Sn相互作用对Mo1Sn2催化剂二甲醚低温氧化性能的影响

杨媛 高秀娟 张伟 王佳豪 曹国壮 梁加仓 宋法恩 姜仁政 韩怡卓 张清德

杨媛, 高秀娟, 张伟, 王佳豪, 曹国壮, 梁加仓, 宋法恩, 姜仁政, 韩怡卓, 张清德. Mo-Sn相互作用对Mo1Sn2催化剂二甲醚低温氧化性能的影响[J]. 燃料化学学报(中英文). doi: 10.3724/2097-213X.2024.JFCT.0005
引用本文: 杨媛, 高秀娟, 张伟, 王佳豪, 曹国壮, 梁加仓, 宋法恩, 姜仁政, 韩怡卓, 张清德. Mo-Sn相互作用对Mo1Sn2催化剂二甲醚低温氧化性能的影响[J]. 燃料化学学报(中英文). doi: 10.3724/2097-213X.2024.JFCT.0005
YANG Yuan, GAO Xiujuan, ZHANG Wei, WANG Jiahao, CAO Guozhuang, LIANG Jiacang, SONG Faen, JIANG Renzheng, Han Yizhuo, ZHANG Qingde. Effects of Mo-Sn interactions on the performance of Mo1Sn2 catalysts for low-temperature oxidation of dimethyl ether[J]. Journal of Fuel Chemistry and Technology. doi: 10.3724/2097-213X.2024.JFCT.0005
Citation: YANG Yuan, GAO Xiujuan, ZHANG Wei, WANG Jiahao, CAO Guozhuang, LIANG Jiacang, SONG Faen, JIANG Renzheng, Han Yizhuo, ZHANG Qingde. Effects of Mo-Sn interactions on the performance of Mo1Sn2 catalysts for low-temperature oxidation of dimethyl ether[J]. Journal of Fuel Chemistry and Technology. doi: 10.3724/2097-213X.2024.JFCT.0005

Mo-Sn相互作用对Mo1Sn2催化剂二甲醚低温氧化性能的影响

doi: 10.3724/2097-213X.2024.JFCT.0005
基金项目: 国家自然科学基金(22172187),山西省中央引导地方科技发展资金项目(YDZJSX2022A072)和中国科学院青年创新促进会人才项目(2014155)资助
详细信息
    通讯作者:

    Tel: 0351-2025131, E-mail: gaoxiujuan@sxicc.ac.cn

    jiangrenzheng@syuct.edu.cn

    qdzhang@sxicc.ac.cn

  • 中图分类号: O643

Effects of Mo-Sn interactions on the performance of Mo1Sn2 catalysts for low-temperature oxidation of dimethyl ether

Funds: The project was supported by the National Natural Science Foundation of China (22172187), the Central Guidance on Local Science and Technology Development Fund of Shanxi Province (YDZJSX2022A072),the Youth Innovation Promotion Association CAS (2014155).
  • 摘要: 采用两步水热法制备了一系列Mo-Sn催化剂,通过改变锡氧化物焙烧温度,考察钼氧化物与不同性质锡氧化物之间的作用方式对二甲醚(DME)低温氧化制甲酸甲酯(MF)性能的影响。结果表明,催化剂的性能与处理条件密切相关,当80 ℃焙烧Sn氧化物,与Mo进行水热作用,再通过500 ℃焙烧得到的Mo1Sn2-80Sn-500催化剂表现出较好的活性,110 ℃反应温度下,MF选择性达97.7%,二甲醚转化率为14.7%。通过XRD、Raman、FT-IR、低温ESR、NH3-TPD、CO2-TPD及H2-TPR对催化剂的表面物理化学性质以及钼物种的配位结构进行了表征。结果表明,Sn氧化物焙烧温度的改变影响了钼氧化物在SnO2表面的存在形式,较低温度处理Sn氧化物后,催化剂中MoO3与MoOx共存,且Mo-Sn界面处Mo5+配位结构增多,催化剂表面较多的酸量有利于DME氧化反应进行,强碱不利于MF生成。
  • 图  1  Mo1Sn2系列催化剂的TEM图像

    Figure  1  TEM spectra of Mo1Sn2 catalysts

    (a), (b): Mo1Sn2-80Sn-300; (c), (d): Mo1Sn2-80Sn-500; (e), (f): Mo1Sn2-500Sn-500.

    图  2  Mo1Sn2系列催化剂的XRD谱图

    Figure  2  The XRD patterns of the Mo1Sn2 catalysts

    (a): XRD patterns of catalysts prepared with different calcination temperatures of tin oxides (a-80Sn-500、b-200Sn-500、c-300Sn-500、d-400Sn-500、e-500Sn-500); (b): XRD patterns of catalysts calcined at different temperatures (a-80Sn-300、b-80Sn-400、c-80Sn-500、d-Sn-600)

    图  3  Mo1Sn2系列催化剂的Raman谱图

    Figure  3  The Raman spectra of the Mo1Sn2 catalysts

    (a): Raman spectra of catalysts prepared with different calcination temperatures of tin oxides (a-80Sn-500、b-200Sn-500、c-300Sn-500、d-400Sn-500、e-500Sn-500); (b): Raman spectra of catalysts calcined at different temperatures (a-80Sn-300、b-80Sn-400、c-80Sn-500、d-Sn-600)

    图  4  Mo1Sn2系列催化剂的FT-IR谱图

    Figure  4  The FI-IR spectra of the Mo1Sn2 catalysts

    (a): FI-IR spectra of catalysts prepared with different calcination temperatures of tin oxides (a-80Sn-500、b-200Sn-500、c-300Sn-500、d-400Sn-500、e-500Sn-500); (b): FI-IR spectra of catalysts calcined at different temperatures(a-80Sn-300、b-80Sn-400、c-80Sn-500、d-Sn-600)

    图  5  Mo1Sn2系列催化剂吸附-脱附曲线

    Figure  5  The desorption spectra of Mo1Sn2 catalysts

    (a): Desorption spectra of catalysts prepared with different Sn calcination temperatures (a-80Sn-500、b-200Sn-500、c-300Sn-500、d-400Sn-500、e-500Sn-500); (b): Desorption spectra of catalysts calcined at different temperatures(a-80Sn-300、b-80Sn-400、c-80Sn-500、d-Sn-600)

    图  6  Mo1Sn2系列催化剂NH3-TPD谱图

    Figure  6  The NH3-TPD profiles of Mo1Sn2 catalysts

    (a): NH3-TPD profiles of catalysts prepared with different calcination temperatures of tin oxides (a-80Sn-500、b-200Sn-500、c-300Sn-500、d-400Sn-500、e-500Sn-500); (b): NH3-TPD profiles of catalysts calcined at different temperatures (a-80Sn-300、b-80Sn-400、c-80Sn-500、d-Sn-600)

    图  7  Mo1Sn2系列催化剂CO2-TPD谱图

    Figure  7  The CO2-TPD profiles of Mo1Sn2 catalysts

    (a): CO2-TPD profiles of catalysts prepared with different calcination temperatures of tin oxides (a-80Sn-500、b-200Sn-500、c-300Sn-500、d-400Sn-500、e-500Sn-500); (b): CO2-TPD profiles of catalysts calcined at different temperatures (a-80Sn-300、b-80Sn-400、c-80Sn-500、d-Sn-600)

    图  8  Mo1Sn2系列催化剂的H2-TPR谱图

    Figure  8  The H2-TPR profiles of Mo1Sn2 catalysts

    (a): H2-TPR profiles of catalysts prepared with different calcination temperatures of tin oxides (a-80Sn-500、b-200Sn-500、c-300Sn-500、d-400Sn-500、e-500Sn-500); (b): H2-TPR profiles of catalysts calcined at different temperatures (a-80Sn-300、b-80Sn-400、c-80Sn-500、d-Sn-600)

    图  9  Mo1Sn2系列催化剂的低温ESR谱图

    Figure  9  The ESR profiles of Mo1Sn2 catalysts

    (a): The ESR profiles of catalysts prepared with different calcination temperatures of tin oxides (a-80Sn-500、b-200Sn-500、c-300Sn-500、d-400Sn-500、e-500Sn-500); (b): The ESR profiles of catalysts calcined at different temperatures (a-80Sn-300、b-80Sn-400、c-80Sn-500、d-Sn-600)

    图  10  Mo-Sn催化剂上DME低温氧化制MF反应路径

    Figure  10  Reaction pathway of low-temperature oxidation of DME to MF over the Mo-Sn catalyst

    表  1  Sn氧化物不同焙烧温度制备的Mo1Sn2催化剂二甲醚低温氧化性能

    Table  1  Low-temperature oxidation performance of dimethyl ether over Mo1Sn2 catalysts prepared with different calcination temperatures of Sn oxides

    Catalyst DME conversion x/% C-mol Selectivity s/%
    MF MeOH
    Mo1Sn2-80Sn-500 14.7 97.7 2.3
    Mo1Sn2-200Sn-500 15.4 95.6 4.4
    Mo1Sn2-300Sn-500 16.6 83.6 16.4
    Mo1Sn2-400Sn-500 9.8 78.4 21.6
    Mo1Sn2-500Sn-500 10.2 67.6 32.4
    Reaction conditions: atmospheric pressure, tR=110 ℃,n(CH3OCH3)∶n(O2)=1∶1, GHSV=1800 h−1.
    下载: 导出CSV

    表  2  不同温度焙烧Mo1Sn2-80Sn催化剂上二甲醚低温氧化性能

    Table  2  Low-temperature oxidation performance of dimethyl ether over Mo1Sn2-80Sn catalysts calcined at different temperatures

    Catalyst DME conversion x/% C-mol Selectivity s/%
    MF MeOH
    Mo1Sn2-80Sn-300 8.2 0 100
    Mo1Sn2-80Sn-400 15.3 96.4 3.6
    Mo1Sn2-80Sn-500 14.7 97.7 2.3
    Mo1Sn2-80Sn-600 20.2 86.0 14.0
    Reaction conditions: atmospheric pressure, tR=110 ℃,n(CH3OCH3)∶n(O2)=1∶1, GHSV=1800 h−1.
    下载: 导出CSV

    表  3  不同温度焙烧锡氧化物的织构性质

    Table  3  The texture properties of Sn oxides calcined at different temperatures

    Catalyst Surface area/(m2·g−1) Volume of pore/(cm3·g−1) Pore size/nm
    Mo1Sn2-80Sn-500 84.1 0.061 4.00
    Mo1Sn2-200Sn-500 83.4 0.052 3.29
    Mo1Sn2-300Sn-500 82.8 0.075 5.12
    Mo1Sn2-400Sn-500 50.6 0.081 4.90
    Mo1Sn2-500Sn-500 36.1 0.091 6.89
    下载: 导出CSV

    表  4  根据谢乐公式计算的催化剂粒径

    Table  4  The particle size of catalysts calculated according to Scherrer formula

    Catalyst $d_{{\mathrm{MoO}}_3} $/nm $d_{{\mathrm{SnO}}_2} $/nm
    Mo1Sn2-80Sn-500 3.9 3.7
    Mo1Sn2-200Sn-500 5.2 3.8
    Mo1Sn2-300Sn-500 6.9 4.3
    Mo1Sn2-400Sn-500 18.8 5.4
    Mo1Sn2-500Sn-500 20.3 6.6
    下载: 导出CSV

    表  5  锡氧化物不同焙烧温度制备的催化剂酸性位点分布

    Table  5  Distribution of acidic sites of catalysts with different calcination temperature of tin oxides

    Catalyst Total acidity/(µmol·g−1) Acid sites density/(µmol·g−1)
    weak medium
    Mo1Sn2-80Sn-500 37.9 22.4 15.5
    Mo1Sn2-200Sn-500 30.7 16.2 14.5
    Mo1Sn2-300Sn-500 24.2 13.9 10.3
    Mo1Sn2-400Sn-500 16.5 4.3 12.2
    Mo1Sn2-500Sn-500 24.8 13 11.8
    下载: 导出CSV

    表  6  锡氧化物不同焙烧温度制备的催化剂碱性位点分布

    Table  6  Distribution of basic sites of catalysts with different calcination temperature of tin oxides

    Catalyst Total basicity/(µmol·g−1) Basic sites density/(µmol·g−1)
    weak and medium strong
    Mo1Sn2-80Sn-500 13.0 13.0
    Mo1Sn2-200Sn-500 12.0 12.0
    Mo1Sn2-300Sn-500 12.9 12.9
    Mo1Sn2-400Sn-500 4.90 4.90
    Mo1Sn2-500Sn-500 2.50 2.50
    下载: 导出CSV

    表  7  不同温度焙烧催化剂的碱性位点分布

    Table  7  Distribution of basic sites of catalysts with different calcination temperatures

    Catalysts Total basicity/(µmol·g−1) Basic sites density/(µmol·g−1)
    weak and medium strong
    Mo1Sn2-80Sn-300 63.9 61.3 2.6
    Mo1Sn2-80Sn-400 58.5 55.2 3.3
    Mo1Sn2-80Sn-500 13.0 13.0
    Mo1Sn2-80Sn-600 32.3 32.3
    下载: 导出CSV
  • [1] AZIZI Z, REZAEIMANESH M, TOHIDIAN T, et al. Dimethyl ether: a review of technologies and production challenges[J]. Chem Eng Process,2014,82:150−172. doi: 10.1016/j.cep.2014.06.007
    [2] LIU G, ZHANG Q, HAN Y, et al. Selective oxidation of dimethyl ether to methyl formate over trifunctional MoO3-SnO2 catalyst under mild conditions[J]. Green Chem,2013,15(6):1501−1504. doi: 10.1039/c3gc40279g
    [3] CAO K P, FAN D, LI L Y, et al. Insights into the pyridine-modified MOR zeolite catalysts for DME carbonylation[J]. ACS Catal,2020,10(5):3372−3280. doi: 10.1021/acscatal.9b04890
    [4] LI X A, SAN X G, ZHANG Y, et al. Direct synthesis of ethanol from dimethyl ether and syngas over combined H-mordenite and Cu/ZnO catalysts[J]. Chemsus chem,2010,3(10):1192−1199. doi: 10.1002/cssc.201000109
    [5] GAO X J, WANG W F, GU Y Y, et al. Synthesis of polyoxymethylene dimethyl ethers from dimethyl ether direct oxidation over carbon-based catalysts[J]. Chemcat chem,2018,10(1):273−279. doi: 10.1002/cctc.201701213
    [6] LIU H C, PATRICIA CHEUNG, IGLESIA* E. Zirconia-supported MoO x catalysts for the selective oxidation of dimethyl ether to formaldehyde: structure, redox properties, and reaction pathways[J]. J Phys Chem B,2003,107(107):4118−4127.
    [7] 孙明, 余林, 孙长勇, 等. 二甲醚的应用及下游产品开发[J]. 精细化工,2003,20:695−699.

    SUN Ming, YU Lin, SUN Changyong, et al. Application of dimethyl ether and development of its downstream products[J]. Fine Chemicals,2003,20:695−699.
    [8] KAISER D, BECKMANN L, WALTER J, et al. Conversion of green methanol to methyl formate [J]. Catalysts, 2021, 11 (7).
    [9] 樊晓东. 甲酸甲酯合成技术进展[J]. 江苏化工,2004,32:19−21.

    FAN Xiaodong. Progress in synthesis of methyl formate[J]. Jiangsu Chemical Industry,2004,32:19−21.
    [10] 崔小明. 我国甲酸甲酯合成技术研究进展[J]. 石油化工技术与经济,2022,38(2):53−58.

    CUI Xiaoming. Synthesis technology research progress of methyl formate in China[J]. Technology Economics in Petrochemicals,2022,38(2):53−58.
    [11] LIU H C, CHEUNG P, IGLESIA E. Structure and support effects on the selective oxidation of dimethyl ether to formaldehyde catalyzed by MoO x domains[J]. J Catal,2003,217(1):222−232.
    [12] ZHANG Z, ZHANG Q, JIA L, et al. Regulation of SBA-15, γ-Al2O3, ZSM-5 and MgO on molybdenum oxide and consequent effect on DME oxidation reaction[J]. Chemistryselect,2016,1(19):6127−6135. doi: 10.1002/slct.201601293
    [13] YANG Q, GAO X, SONG F, et al. Unsaturated penta-coordinated Mo5c5+ sites enabled low-temperature oxidation of C-H bonds in ethers[J]. JACS Au,2023,3(11):3141−3154. doi: 10.1021/jacsau.3c00479
    [14] 王佳 , 高秀娟, 张涛 , 等. 低钼锡比催化剂中钼的价态对甲醇氧化制甲缩醛反应性能的影响[J]. 燃料化学学报,2023,52(1):38−46.

    WANG Jia, GAO Xiujuan, ZHANG Tao, et al. Effect of molybdenum valence in low Mo/Sn ratio catalysts for the oxidation of methanol to dimethoxymethane[J]. J Fuel Chem Technol,2023,52(1):38−46.
    [15] 刘广波. 二甲醚分子低温活化及其定向转化机制的研究 [D]. 北京: 中国科学院大学, 2013.

    LIU Guangbo. The study of dimethyl ether molecule activation and directional conversion at low temperature[D]. Beijing: University of Chinese Academy of Sciences, 2013.)
    [16] LAKSHMI L J, ALYEA E C. ESR, FT-Raman spectroscopic and ethanol partial oxidation studies on MoO3-SnO2 catalysts made by metal oxide vapor synthesis[J]. Catal Lett,1999,59(1):73−77. doi: 10.1023/A:1019099900418
    [17] 熊盼, 高秀娟, 王文秀, 等. 焙烧温度对钼锡催化剂结构和二甲醚氧化性能的影响[J]. 燃料化学学报,2022,50(1):63−71. doi: 10.1016/S1872-5813(21)60120-2

    XIONG Pan, GAO Xiujuan, WANG Wenxiu, et al. Effect of calcination temperature on the structure and performance of molybdenum-tin catalyst for DME oxidation[J]. J Fuel Chem Technol,2022,50(1):63−71. doi: 10.1016/S1872-5813(21)60120-2
    [18] 杨奇. 钼锡催化剂上二甲醚低温氧化机理研究 [D]. 北京: 中国科学院大学, 2019.

    YANG Qi. Study on the mechanism of the low-temperature oxidation of dimethyl ether over MoO3-SnO2 catalyst[D]. Beijing: University of Chinese Academy of Sciences, 2019.)
    [19] 王佳. 钼锡催化剂上甲醇低温氧化转化制甲缩醛的研究[D]. 北京: 中国科学院大学, 2023.

    WANG Jia. Low-temperature oxidative conversion of methanol to dimethoxymethane over molybdenum-tin catalysts[D]. Beijing: University of Chinese Academy of Sciences, 2023.)
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  18
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-13
  • 修回日期:  2024-04-10
  • 录用日期:  2024-04-11
  • 网络出版日期:  2024-07-03

目录

    /

    返回文章
    返回