留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

木屑与低密度聚乙烯两段式共热解制备液体芳烃研究

龚桐荻 蔡勤杰 张素平

龚桐荻, 蔡勤杰, 张素平. 木屑与低密度聚乙烯两段式共热解制备液体芳烃研究[J]. 燃料化学学报(中英文). doi: 10.3724/2097-213X.2024.JFCT.0006
引用本文: 龚桐荻, 蔡勤杰, 张素平. 木屑与低密度聚乙烯两段式共热解制备液体芳烃研究[J]. 燃料化学学报(中英文). doi: 10.3724/2097-213X.2024.JFCT.0006
GONG Tongdi, CAI Qinjie, ZHANG Suping. Production of liquid aromatics by two-stage co-pyrolysis of sawdust and low-density polyethylene[J]. Journal of Fuel Chemistry and Technology. doi: 10.3724/2097-213X.2024.JFCT.0006
Citation: GONG Tongdi, CAI Qinjie, ZHANG Suping. Production of liquid aromatics by two-stage co-pyrolysis of sawdust and low-density polyethylene[J]. Journal of Fuel Chemistry and Technology. doi: 10.3724/2097-213X.2024.JFCT.0006

木屑与低密度聚乙烯两段式共热解制备液体芳烃研究

doi: 10.3724/2097-213X.2024.JFCT.0006
基金项目: 国家重点研发计划(2022YFC3902504)资助
详细信息
    通讯作者:

    Tel: 021-64253283, E-mail: zsp@ecust.edu.cn

  • 中图分类号: TK6

Production of liquid aromatics by two-stage co-pyrolysis of sawdust and low-density polyethylene

Funds: The project was supported by National Key Research and Development Program of China (2022YFC3902504).
  • 摘要: 将塑料与生物质进行共热解有望利用塑料的富氢特性改善生物质热解液体产物的品质。本研究设计了两段式的热解过程,以松木木屑和低密度聚乙烯(LDPE)协同转化制备液体芳烃。催化热解过程所得液体产物自然分层为有机相和水相,当使用两段式热解体系时,其有机相产率比传统单段热解提高11.4%。通过木屑与LDPE单独热解与共热解对比,发现木屑与LDPE共热解过程中存在基于氢转移的协同作用,能够促进液体芳烃的形成,且该协同作用在两段式过程中更显著。原料中LDPE所占比例会影响协同效应强度;在木屑和LDPE质量比为1∶1时协同效应最显著,所得有机相产率达到47.2%,其中芳烃含量为93.8%。提高两段温度可以促进木屑和LDPE挥发分的析出并强化芳构化反应,但过高的温度会促进气体生成;当初步热解段温度在600 ℃,协同转化段温度在500 ℃时,共热解芳烃产率最高。碱性氧化物MgO可以促进木屑与LDPE的初步热解,使用MgO作为初步热解段催化剂对比ZrO2有机相产率提高5.2%,对协同转化段HZSM-5催化剂通过Ga2O3进行负载能够进一步提升协同转化效果,最终有机相产率达到51.5%,其中芳烃含量达到98.9%。
  • 图  1  实验装置图

    Figure  1  Experimental setup

    图  2  50%木屑-50%LDPE的两段共热解转化与单段共热解转化的结果

    Figure  2  Results of two-stage co-pyrolysis conversion and single-stage co-pyrolysis conversion of 50% sawdust to 50% LDPE

    (a): product yield; (b): organic phase composition.

    图  3  木屑/LDPE单独转化过程和木屑与LDPE共转化过程的结果

    Figure  3  Results of wood chips/LDPE conversion process alone and sawdust and LDPE co-conversion process

    (a): product yield; (b): organic phase composition.

    图  4  木屑和LDPE两段式协同转化机理图

    Figure  4  Mechanism diagram of two-stage synergistic transformation of sawdust and LDPE

    图  5  不同掺混比例对两段共热解转化的影响

    Figure  5  Effects of catalysts in different co-conversion stages on the two-stage co-pyrolysis conversion of 50% sawdust to 50% LDPE

    (a): product yield; (b): organic phase composition.

    图  6  不同初步热解段温度下50%木屑-50%LDPE两段式共热解的结果

    Figure  6  Results of 50% sawdust-50% LDPE two-stage co-pyrolysis at different preliminary pyrolysis section temperatures

    (a): product yield; (b): organic phase composition.

    图  7  不同协同转化段温度下50%木屑-50%LDPE两段共热解的结果

    Figure  7  The results of two-stage co-pyrolysis of 50% sawdust and 50% LDPE at different co-conversion section temperatures

    (a): product yield; (b): organic phase composition.

    图  8  50%木屑-50%LDPE的两段共热解转化中不同初步裂解段催化剂的结果

    Figure  8  Results of catalysts in different preliminary cracking stages in the two-stage co-pyrolysis conversion of 50% sawdust and 50% LDPE

    (a): product yield; (b): organic phase composition.

    图  9  不同协同转化段催化剂对50%木屑-50%LDPE的两段共热解转化的影响

    Figure  9  Effects of catalysts in different co-conversion stages on the two-stage co-pyrolysis conversion of 50% sawdust to 50% LDPE

    (a): product yield; (b): organic phase composition.

    图  10  HZSM-5和Ga2O3/HZSM-5的NH3-TPD表征结果

    Figure  10  NH3-TPD characterization of HZSM-5 and Ga2O3/HZSM-5

    表  1  木屑与LDPE的元素分析和工业分析(干基)

    Table  1  Elemental analysis of sawdust and LDPE (dry basis)

    Sample Elemental analysis/% Industrial Analytics/%
    C H O N V A FC
    Sawdust 48.71 5.83 45.14 0.32 80.04 7.75 12.21
    LDPE 85.32 14.68 0 0 99.97 0.03 0
    下载: 导出CSV

    表  2  不同木屑/LDPE比例下有机相产率的相关数值(%)

    Table  2  Correlation values of organic phase yield under different sawdust/LDPE ratios (%)

    Sawdust/LDPE Theoretical values Actual values Lift value
    2∶1 31.3 33.5 2.2
    1∶1 39.9 47.2 7.3
    1∶2 48.5 51.7 3.2
    下载: 导出CSV

    表  3  本文生物质与塑料共热解结果与文献的对比

    Table  3  Comparison of co-pyrolysis of biomass and plastic in this work with those in references

    Biomass Plastic Catalytic Pyrolysis
    system
    Mixing ratio Catalyst Pyrolysis temperature Aromatic hydrocarbon
    yield
    References
    Sawdust LDPE Two-stage 1∶1 MgOGa2O3
    HZSM-5
    600 ℃/
    500 ℃
    50.9% this work
    Walnut shell LDPE One-stage 1∶1 HZSM-5 550 ℃ 45.3% [27]
    Pine sawdust PS One-stage
    1∶1
    HZSM-5 650 ℃ 47% [28]
    Pine sawdust PVC One-stage
    1∶1
    HZSM-5 600 ℃ 43.2% [29]
    Switchgrass HDPE One-stage 1∶1 HZSM-5 650 ℃ 48.2% [30]
    下载: 导出CSV
  • [1] MULLEN C A, DORADO C, BOATENG A A. Catalytic co-pyrolysis of switchgrass and polyethylene over HZSM-5: Catalyst deactivation and coke formation[J]. J Anal Appl Pyrol,2018,129:195−203. doi: 10.1016/j.jaap.2017.11.012
    [2] 李致煜, 郭柱, 李显, 等. 生物质“热溶富碳”及其产物利用[J]. 燃料化学学报(中英文),2023,51(2):129−144.

    LI Zhiyu, GUO Zhu, LI Xian, et al. “Thermal dissolution based carbon enrichment” of biomass waste and the product utilization[J]. J Fuel Chem Technol,2023,51(2):129−144.
    [3] 马中青, 丁紫霞, 李逍然, 等. 纤维素生物质与废塑料共催化热解制取富烃液体燃料的研究进展[J]. 燃料化学学报(中英文),2024,52(3):438−451.

    MA Zhongqing, DING Zixia, LI Xiaoran, et al. Recent progress on co-catalytic fast pyrolysis of biomass and waste plastics to produce hydrocarbon-rich liquid fuels[J]. J Fuel Chem Technol,2024,52(3):438−451.
    [4] 唐紫玥, 陈伟, 陈旭, 等. 微藻与塑料混合热解的热解特性和动力学研究[J]. 燃料化学学报(中英文),2023,51(8):1145−1154.

    TANG Ziyue, CHEN Wei, CHEN Xu, et al. Pyrolysis characteristics and kinetics of co-pyrolysis of microalgae and plastics[J]. J Fuel Chem Technol,2023,51(8):1145−1154.
    [5] 朱亮, 黄明, 丁紫霞, 等. 烘焙脱氧毛竹与高密度聚乙烯共催化热解制备轻质芳烃[J]. 燃料化学学报,2022,50(8):993−1003.

    ZHU Liang, HUANG Ming, DING Zixia, et al. Production of light bio-aromatics from co-catalytic fast pyrolysis oftorrefied bamboo and high-density polyethylene[J]. J Fuel Chem Technol,2022,50(8):993−1003.
    [6] TIAN X, BIAN X, ZENG Z, et al. Production of monocyclic aromatic hydrocarbons by segmented in situ and ex situ two-stage coupled catalytic co-pyrolysis of biomass and waste plastics[J]. Green Chem,2022,24(23):9191−9202. doi: 10.1039/D2GC03086A
    [7] HASSAN H, HAMEED B H, LIM J K. Co-pyrolysis of sugarcane bagasse and waste high-density polyethylene: Synergistic effect and product distributions[J]. Energy,2020,191:7888−7898.
    [8] CAI Q, GONG T, YU T, et al. Selective production of light aromatics from hydrocracking of pyrolytic lignin over Ni/HZSM-5[J]. Energy Fuels,2022,36(18):10975−10989. doi: 10.1021/acs.energyfuels.2c00870
    [9] ZHAO, YF, WANG, et al. Fast microwave-assisted ex-catalytic co-pyrolysis of bamboo and polypropylene for bio-oil production[J]. Bioresource Technol,2018,44:5443.
    [10] CHENG Y T, HUBER G W. Chemistry of furan conversion into aromatics and olefins over HZSM-5: A model biomass conversion reaction[J]. ACS Cata,2011,1(6):611−628. doi: 10.1021/cs200103j
    [11] HUIMIN G, XIANGYU L, HAIYAN W, et al. Thermogravimetric analysis and kinetics of co-catalytic pyrolysis of cellulose and polypropylene blends[J]. Acta Energiae Solaris Sinica,2017,57:6786−6790.
    [12] 黄明, 朱亮, 丁紫霞, 等. 生物质三组分与低密度聚乙烯共催化热解制取轻质芳烃的协同作用机理[J]. 化工学报,2022,73(2):699−711.

    HUANG Ming, ZHU Liang, DING Zixia, et al. Synergistic interactions of biomass three-component and low-density polyethylene during co-catalytic fast pyrolysis for the production of light aromatics[J]. CIESC J,2022,73(2):699−711.
    [13] DING Y M, HUANG B Q, LI K Y, et al. Thermal interaction analysis of isolated hemicellulose and cellulose by kinetic parameters during biomass pyrolysis[J]. Energy,2020,195:588−599.
    [14] RUI Y, YAFEI S. Catalytic pyrolysis of biomass-plastic wastes in the presence of MgO and MgCO3 for hydrocarbon-rich oils production[J]. Bioresource Technol,2019,293:121355.
    [15] LIN X, ZHANG Z, ZHANG Z, et al. Catalytic fast pyrolysis of a wood-plastic composite with metal oxides as catalysts[J]. Waste Manage,2018,79:38−47. doi: 10.1016/j.wasman.2018.07.021
    [16] 李承宇, 张军, 袁浩然, 等. 纤维素热解转化的研究进展[J]. 燃料化学学报,2021,49(12):1733−1751. doi: 10.1016/S1872-5813(21)60134-2

    LI Chengyu, ZHANG Jun, YUAN Haoran, et al. Advance on the pyrolytic transformation of cellulose[J]. J Fuel Chem Technol,2021,49(12):1733−1751. doi: 10.1016/S1872-5813(21)60134-2
    [17] MA Z, VANBOKHOVEN J A. Deactivation and regeneration of H-USY zeolite during lignin catalytic fast pyrolysis[J]. ChemCatChem,2012,4(12):2036−2044. doi: 10.1002/cctc.201200401
    [18] HUANG M, MA Z, ZHOU B, et al. Enhancement of the production of bio-aromatics from renewable lignin by combined approach of torrefaction deoxygenation pretreatment and shape selective catalytic fast pyrolysis using metal modified zeolites[J]. Bioresource Technol,2020,301:122754. doi: 10.1016/j.biortech.2020.122754
    [19] CAI Q, GONG T, YU T, et al. Comparison of hydrocracking and cracking of pyrolytic lignin over different Ni-based catalysts for light aromatics production[J]. Fuel Process Technol,2023,240:107564. doi: 10.1016/j.fuproc.2022.107564
    [20] JIN R Z, MA K, CHEN Z S, et al. Effect of CO2 on the catalytic performance of Zn/ZSM-5 towards the conversion of methanol to aromatics[J]. Fuel,2023,332:5843.
    [21] USLAMIN E A, KOSINOV N, FILONENKO G A, et al. Co-aromatization of furan and methanol over ZSM-5 a pathway to bio-aromatics[J]. ACS Cata,2019,9(9):8547−8554. doi: 10.1021/acscatal.9b02259
    [22] ROZMYSTOWICZ B, YEAP J H, ELKHAIARY A M I, et al. Catalytic valorization of the acetate fraction of biomass to aromatics and its integration into the carboxylate platform[J]. Green Chem,2019,21(10):2801−2809. doi: 10.1039/C9GC00513G
    [23] YOU H. Effects of reaction temperature on distribution of aromatization reaction products of lanlian FCC gasoline[J]. Petrol Sci Technol,2010,28(4):360−373. doi: 10.1080/10916460903057915
    [24] DING, KUAN, ZHONG, et al. Improving hydrocarbon yield from catalytic fast co-pyrolysis of hemicellulose and plastic in the dual-catalyst bed of CaO and HZSM-5[J]. Bioresource Technol,2018,62:5633.
    [25] STEFANIDIS S D, KALOGIANNIS K G, ILIOPOULOU E F, et al. In-situ upgrading of biomass pyrolysis vapors: Catalyst screening on a fixed bed reactor[J]. Bioresource Technol,2011,102(17):8261−8267. doi: 10.1016/j.biortech.2011.06.032
    [26] ZHANG X, WU J F, CHEN J H, et al. Production of aromatic hydrocarbons by co-cracking of bio-oil and ethanol over Ga2O3/HZSM-5 catalysts[J]. Chinese J Chem Eng,2022,46:126−133. doi: 10.1016/j.cjche.2021.07.011
    [27] YU D X, HUI H L, LI S G. Two-step catalytic co-pyrolysis of walnut shell and LDPE for aromatic-rich oil[J]. Energ Convers Manage,2019,198:111816. doi: 10.1016/j.enconman.2019.111816
    [28] ZHANG H Y, NIE J L, XIAO R, et al. Catalytic co-pyrolysis of biomass and different plastics (Polyethylene, Polypropylene, and Polystyrene) to improve hydrocarbon yield in a fluidized-bed reactor[J]. Energy Fuels,2014,28(3):1940−1947. doi: 10.1021/ef4019299
    [29] LU P, HUANG Q X, BOURTSALAS A C, et al. Synergistic effects on char and oil produced by the co-pyrolysis of pine wood, polyethylene and polyvinyl chloride[J]. Fuel,2018,230:359−367. doi: 10.1016/j.fuel.2018.05.072
    [30] MULLEN C A, DORADO C, BOATENG A A. Catalytic co-pyrolysis of switchgrass and polyethylene over HZSM-5: Catalyst deactivation and coke formation[J]. J Anal Appl Pyrol,2018,129:195−203. doi: 10.1016/j.jaap.2017.11.012
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  19
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-26
  • 修回日期:  2024-06-07
  • 录用日期:  2024-06-21
  • 网络出版日期:  2024-07-03

目录

    /

    返回文章
    返回