留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe基CO2加氢制C2+醇催化剂研究进展

陈永杰 邢小芳 王阳 吴明铂

陈永杰, 邢小芳, 王阳, 吴明铂. Fe基CO2加氢制C2+醇催化剂研究进展[J]. 燃料化学学报(中英文). doi: 10.3724/2097-213X.2024.JFCT.0007
引用本文: 陈永杰, 邢小芳, 王阳, 吴明铂. Fe基CO2加氢制C2+醇催化剂研究进展[J]. 燃料化学学报(中英文). doi: 10.3724/2097-213X.2024.JFCT.0007
CHEN Yongjie, XING Xiaofang, WANG Yang, WU Mingbo. Advances in Fe-based catalysts for the hydrogenation of CO2 to C2+ alcohols[J]. Journal of Fuel Chemistry and Technology. doi: 10.3724/2097-213X.2024.JFCT.0007
Citation: CHEN Yongjie, XING Xiaofang, WANG Yang, WU Mingbo. Advances in Fe-based catalysts for the hydrogenation of CO2 to C2+ alcohols[J]. Journal of Fuel Chemistry and Technology. doi: 10.3724/2097-213X.2024.JFCT.0007

Fe基CO2加氢制C2+醇催化剂研究进展

doi: 10.3724/2097-213X.2024.JFCT.0007
基金项目: 国家自然科学基金(22108310)资助
详细信息
    通讯作者:

    Tel: 0532-86983801, E-mail: wangyang@upc.edu.cn

    wumb@upc.edu.cn

  • 中图分类号: TQ223;TQ426;X701

Advances in Fe-based catalysts for the hydrogenation of CO2 to C2+ alcohols

Funds: The project was supported by National Natural Science Foundation of China (22108310).
  • 摘要: Fe基催化剂因价格低廉、结构易于调控、热稳定性优良以及兼具CO2分子C−O键活化和C−C键偶联活性位点等优势,成为热催化CO2加氢制高值化学品C2+醇的理想选择。本文围绕Fe基催化剂制备、改性和结构-性能关系等,系统介绍了CO2加氢制C2+醇领域的最新研究进展,详细讨论了影响Fe基催化剂CO2加氢反应性能的关键因素,即活性位点电子结构特性影响关键反应中间体的吸附行为,进而影响催化反应网络。阐述了金属-载体间电子相互作用和第二元素掺杂改性两大最常用策略调控Fe基催化剂电子结构特性的有效性,讨论了双组分级联催化和CO/CO2共进气两种反应过程强化策略。本文也展望了该研究领域面临的机遇和挑战,以期推动热催化CO2加氢制C2+醇Fe基催化剂的工程化应用。
  • 图  1  (a)Fe基催化剂CO2加氢制C2+醇催化反应网络,(b)C−O键可控活化/C−C键高效偶联,(c)反应过程强化

    Figure  1  (a) Catalytic reaction network for CO2 hydrogenation to C2+ alcohols over Fe-based catalysts. (b) Controlled activation of C−O bonds/efficient coupling of C−C bonds. (c) Reaction process enhancement.

    图  2  KFeCu/ZrO2与FeCu/ZrO2样品的(a)Zr 3d XPS图谱和(b)O 1s XPS图谱,以及在(c)CO预吸附TPSR-MS图谱中m/q =16和28的MS信号;(d)KFeCu/a-ZrO2被NH3毒化过程示意图[22]

    Figure  2  (a) Zr 3d XPS pattern and (b) O 1s XPS pattern of KFeCu/ZrO2 and FeCu/ZrO2 samples. (c) MS signals at m/q = 16 and 28 in CO pre-adsorption TPSR-MS pattern. (d) Schematic diagram of the poisoning process of KFeCu/a-ZrO2 by NH3[22]. (with permission from ACS Publications)

    图  3  sp-CuNaFe 和 im-CuNaFe 催化剂的(a)Cu 2p XPS光谱,(b)Cu LM2 XPS光谱和(c)Fe 2p XPS光谱[26]

    Figure  3  sp-CuNaFe and im-CuNaFe catalysts with (a) Cu 2p XPS spectra, (b) Cu LM2 XPS spectra, and (c) Fe 2p XPS spectra[26]. (with permission from ACS Publications)

    图  4  CO2加氢合成乙醇的碳层电子缓冲效应示意图[23]

    Figure  4  Schematic representation of the electron buffering effect in the carbon layer of CO2 hydrogenation for ethanol synthesis[26]. (with permission from Wiley Publications)

    图  5  还原后(a),(c)和反应后(b),(d)KFe、KFe/S1和KFe/Z5-36催化剂的XRD和XPS图[39]

    Figure  5  XRD and XPS plots of KFe, KFe/S1, and KFe/Z5-36 catalysts after reduction (a), (c) and spent (b), (d)[39]. (with permission from ACS Publications)

    图  6  CuFe(a、c和e)和Cr(1%)-CuFe(b、d和f)催化剂上的CO2加氢原位DRIFTS[24]

    Figure  6  In situ DRIFTS for CO2 hydrogenation over CuFe (a, c, and e) and Cr(1%)-CuFe (b, d, and f) catalysts[24] (with permission from Elsevier Publications)

    图  7  在 NaFe@C−CZA 多功能催化剂上将CO2加氢转化为C2+醇的可能反应途径(a)和邻近效应(b)[12] 。(c)用于C2+醇合成的CO/CO2共进气金属-分子筛级联催化工艺[48]

    Figure  7  Possible reaction pathways (a) and proximity effects (b) for the hydrogenation of CO2 to C2+ alcohols over NaFe@C−CZA multifunctional catalysts[12]. (c) Metal-molecular sieve cascade catalytic process for CO/CO2 co-feeding for C2+ alcohol synthesis[48]. (with permission from ACS Publications and Wiley Publications)

    表  1  近年CO2加氢制C2+醇的各类Fe基催化剂反应条件及性能汇总

    Table  1  Reaction conditions and performance of Fe-based catalysts for CO2 hydrogenation to C2+ alcohols in recent years

    NO. Catalysts T/°C P/MPa GHSV/
    (mL·g−1·h−1)
    CO2
    Conv./%
    CO
    Sel./%
    CH4
    Sel./%
    EtOH
    Sel./%
    C2+OH
    Sel./%
    C2+OH·STY./
    (mg·g−1·h−1)
    Ref.
    1 CuZnFe0.5K0.15 300 6.0 5000 42.3 6.9 31.94 0.17/
    (g mL−1 h−1)
    [8]
    2 0.1Pd/Fe3O4 300 0.1 60000 0.3 0 97.5 97.5 413/
    (mmol·g−1·h−1)
    [9]
    3 4.6K-CMZF 320 5.0 6000 30.4 22.8 69.6 [10]
    4 3%Cs-C0.8F0.1Z1.0 330 5.0 4500 36.6 20.6 ~10 19.8 73.4 [11]
    5 2% Na-Fe@C/5% KCuZnAl 320 5.0 4500 39.2 9.4 ~6 35 35 [12]
    6 K-CMZF/CZA 320 5.0 6000 42.3 13.8 10.1 14.7 17.4 106.5 [13]
    7 K-0.82-FeIn/Ce-ZrO2-900 300 10.0 4500 29.6 13.4 20.1 28.7 [14]
    8 FeNaS-0.6 320 3.0 8000 32.0 20.7 13.0 15.9 78.5 [15]
    9 Na/Fe3O4 300 3.0 2500 30.6 4.1 15.1 38.3 42.88 [16]
    10 2K20Fe5Rh-SiO2 250 5.0 7000 18.4 46 15.9 15.9
    (EtOH)
    21.4/
    (mL∙g−1∙h−1)
    [17]
    11 In2Fe/K-Al2O3 300 2.0 4000 36.7 7.4 14.6 42 [18]
    12 0.6S-KCFZ 320 5.0 3000 36.1 12.1 20.2 50.7 [19]
    13 0.6SKCFZ/CuZnAlZr (1:1) 320 5.0 12000 36.6 22.3 18.2 173.9 [19]
    14 4.7KCFZ/CuZnAlZr (1:1) 300 5.0 3000 27.0 25.4 24.6 42.0 [20]
    15 10Mn1K-FeC 300 3.0 6000 40.5 33.4 7.0 10.5 [21]
    16 KFeCu/a-ZrO2 320 4.0 12000 25.7 26.1 125.0 [22]
    17 Na-ZnFe@C
    (10 vol% CO co-feeding)
    320 5.0 9000 32.8 89.2a 29.5 29.5 366.6 [23]
    18 Na-ZnFe@C 320 5.0 9000 38.4 7.6 15 20.3 20.3 158.1 [23]
    19 Cr(1%)-CuFe 320 4.0 6000 38.4 14.8 17 22.1 29.2 104.1 [24]
    20 Cr(1%)-CuFe 320 4.0 24000 30.1 17.5 22 16.1 20.4 217.3 [24]
    21 Cr(1%)-CuFe 320 4.0 48000 24.0 23.3 21 13.8 17.5 268.5 [24]
    22 MnCuK-FeC/
    CuZnAlZr
    300 3.0 6000 42.1 9.3 15.5 [25]
    23 sp-CuNaFe 310 3.0 28800 32.3 ~17 ~34 ~10 153 [26]
    24 K/Cu-Zn-Fe 300 7 5000
    (mL mLcat−1 h−1)
    44.2 5.9 19.5 110.6
    g Lcat−1 h−1
    [27]
    25 RhFeLi/TiO2 250 3 6000
    (mL mLcat−1 h−1)
    15.7 12.5 35.8 60.6
    g Lcat−1 h−1
    [28]
    26 Cu25Fe22Co3K3-CuZn1.0K0.15 350 6 5000
    (mL mLcat−1 h−1)
    32.4 45.3 12.9 ~6.53 <27.3
    g Lcat−1 h−1
    [29]
    27 RhFe/SiO2 260 5 6000 23.7 23.7 30.9 16.4 16.4 ~59.9 [30]
    28 90Fe10Co(1.0)K 240 1.2 1500 14.5 45.5 5.9 5.9 ~3.3 [31]
    aCO conversion.
    下载: 导出CSV
  • [1] DING M, FLAIG R, H2 dissociatedW, JIANG H L, et al. Carbon capture and conversion using metalorganic frameworks and MOF-based materials[J]. Chem Soc Rev,2019,48(10):2783−2828.
    [2] WEI, J, YAO, R, HAN, Y, et al. Towards the development of the emerging process of CO2 heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons[J]. Chem Soc Rev,2021,50(19):10764−10805.
    [3] JIANG Y, LONG R, XIONG Y. Regulating C–C coupling in thermo-catalytic and electrocatalytic COx conversion based on surface science[J]. Chem Sci,2019,10(31):7310−7326.
    [4] YUAN S, LI Y, PENG J, et al. Conversion of methane into liquid Fuels—bridging thermal catalysis with electrocatalysis[J]. Adv Energy Mater,2020,10(40):2002154.
    [5] MANDAL S C, DAS A, ROY D, et al. Developments of the heterogeneous and homogeneous CO2 hydrogenation to value-added C2+-based hydrocarbons and oxygenated products[J]. Coord Chem Rev,2022,471:214737.
    [6] XU D, WANG Y, DING M, et al. Advances in higher alcohol synthesis from CO2 hydrogenation[J]. Chem,2021,7(4):849−881.
    [7] ZHU J, WANG P, ZHANG X, et al. Dynamic structural evolution of iron catalysts involving competitive oxidation and carburization during CO2 hydrogenation[J]. Sci Adv,2022,8(5):3629.
    [8] LI S, GUO H, LUO C, et al. Effect of iron promoter on Structure and performance of K/Cu–Zn catalyst for higher alcohols synthesis from CO2 hydrogenation[J]. Catal Lett,2013,143(4):345−355.
    [9] CAPARRÓS F J, SOLER L, ROSSELL M D, et al. Remarkable carbon dioxide hydrogenation to ethanol on a palladium/iron oxide single-atom catalyst[J]. ChemCatChem,2018,10(11):2365−2369.
    [10] XU D, DING M, HONG X, et al. Mechanistic aspects of the role of K promotion on Cu−Fe-based catalysts for higher alcohol synthesis from CO2 Hydrogenation[J]. ACS Catal,2020,10(24):14516−14526.
    [11] XI X, ZENG F, ZHANG H, et al. Selective C2+ alcohol synthesis from direct CO2 hydrogenation over a Cs-promoted Cu-Fe-Zn catalyst[J]. ACS Catal,2020,10(9):5250−5260.
    [12] WANG Y, WANG K, ZHANG B, et al. Direct conversion of CO2 to ethanol boosted by intimacy-sensitive multifunctional catalysts[J]. ACS Catal,2021,11(18):11742−11753.
    [13] XU D, YANG H, HONG X, et al. 9- Tandem Catalysis of Direct CO2 Hydrogenation to Higher Alcohols[J]. ACS Catal,2021,11(15):8978−8984.
    [14] XI X, ZENG F, ZHANG H, et al. CO2 hydrogenation to higher alcohols over K-promoted bimetallic Fe-In catalysts on a Ce-ZrO2 support[J]. ACS Suustain Chem Eng,2021,9(18):6235−6249.
    [15] YAO R, WEI J, GE Q, et al. Monometallic iron catalysts with synergistic Na and S for higher alcohols synthesis via CO2 hydrogenation[J]. Appl Catal B,2021,298:120556.
    [16] LU F, CHEN X, WANG W, Yi Z. Adjusting the CO2 hydrogenation pathway via the synergic effects of iron carbides and iron oxides[J]. Catal Sci Technol,2021,11(23):7694−7703.
    [17] GORYACHEV A, PUSTOVARENKO A, SHTERK G, et al. A multi-parametric catalyst screening for CO2 hydrogenation to ethanol[J]. ChemCatChem,2021,13(14):3324−3332.
    [18] GOUD D, CHURIPARD S R, BAGCHI D, et al. Strain-enhanced phase transformation of iron oxide for higher alcohol production from CO2[J]. ACS Catal,2022,12(18):11118−11128.
    [19] WANG Y, ZHANG X, HONG X, et al. Sulfate-promoted higher alcohol synthesis from CO2 hydrogenation[J]. ACS Suustain Chem Eng,2022,10(27):8980−8987.
    [20] WANG Y, XU D, ZHANG X, et al. Selective C2+ alcohol synthesis by CO2 hydrogenation via a reaction-coupling strategy[J]. Catal Sci Technol,2022,12(5):1539−1550.
    [21] HUANG J, ZHANG G, ZHU J, et al. Boosting the production of higher alcohols from CO2 and H2 over Mn- and K-modified iron carbide[J]. Ind Eng Chem Res,2022,61(21):7266−7274.
    [22] LIU T, XU D, SONG M, et al. K−ZrO2 interfaces boost CO2 hydrogenation to higher alcohols[J]. ACS Catal,2023,13(7):4667−4674.
    [23] WANG Y, WANG W, HE R, et al. Carbon-based electron buffer layer on ZnOx-Fe5C2-Fe3O4 boosts ethanol synthesis from CO2 hydrogenation[J]. Angew Chem Int Ed,2023,62(46):e202311786.
    [24] ZHANG Q, WANG S, GENG R, et al. Hydrogenation of CO2 to higher alcohols on an efficient Cr-modified CuFe catalyst[J]. Appl Catal B,2023,337:123013.
    [25] HUANG J, ZHANG G, WANG M, et al. The synthesis of higher alcohols from CO2 hydrogenation over Mn-Cu-K modified Fe5C2 and CuZnAlZr tandem catalysts[J]. Front Energy Res,2023,10:995800.
    [26] SI Z, WANG L, HAN Y, et al. Synthesis of alkene and ethanol in CO2 hydrogenation on a highly active sputtering CuNaFe catalyst[J]. ACS Suustain Chem Eng,2022,10(45):14972−14979.
    [27] TAKAGAWA M, OKAMOTO A, FUJIMURA H, et al. Ethanol synthesis from carbon dioxide and hydrogen[M]. Stud Surf Sci Catal, 1998, 114, 525–528.
    [28] YANG C, MU R, WANG G, et al. Hydroxyl-mediated ethanol selectivity of CO2 hydrogenation[J]. Chem Sci,2019,10(11):3161−3167.
    [29] GUO H, LI S, PENG F, et al. Roles investigation of promoters in K/Cu–Zn catalyst and higher alcohols synthesis from CO2 hydrogenation over a novel two-stage bed catalyst combination system[J]. Catal Lett,2015,145(2):620−630.
    [30] KUSAMA H, OKABE K, SAYAMA K, et al. Ethanol synthesis by catalytic hydrogenation of CO2 over Rh-Fe/SiO2 catalysts[J]. Energy,1997,22(2-3):343−348.
    [31] GNANAMANI M K, HAMDEH H H, JACOBS G, et al. Hydrogenation of carbon dioxide over K-promoted FeCo bimetallic catalysts prepared from mixed metal oxalates[J]. ChemCatChem,2017,9(7):1303−1312.
    [32] WEI J, GE Q, YAO R, et al. Directly converting CO2 into a gasoline fuel[J]. Nat Commun,2017,8(1):15174.
    [33] JIANG F, ZHANG M, LIU B, et al. Insights into the influence of support and potassium or sulfur promoter on iron-based Fischer–Tropsch synthesis: understanding the control of catalytic activity, selectivity to lower olefins, and catalyst deactivation[J]. Catal Sci Technol,2017,7(5):1245−1265.
    [34] CAMPBELL C T. Catalyst-support interactions electronic perturbations[J]. Nat Chem,2012,4(8):597−598.
    [35] YANG J, LI W, WANG D, et al. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis[J]. Adv Mater,2020,32(49):2003300.
    [36] LU Y, ZHANG R, CAO B, et al. Elucidating the copper−Hägg iron carbide synergistic interactions for selective CO hydrogenation to higher alcohols[J]. ACS Catal,2017,7(8):5500−5512.
    [37] XIONG H, JEWELL L L, COVILLE N J. Shaped carbons as supports for the catalytic conversion of syngas to clean fuels[J]. ACS Catal,2015,5(4):2640−2658.
    [38] ZHANG F, ZHOU W, XIONG X, et al. Selective hydrogenation of CO2 to ethanol over sodium-modified Rh odium nanoparticles embedded in Zeolite Silicalite-1[J]. J Phys Chem C,2021,125(44):24429−24439.
    [39] XU D, FAN H, LIU K, et al. Impacts of interaction between active components on catalyst deactivation over KFe/ZSM-5 bifunctional catalyst[J]. ACS Sustain Chem Eng,2023,11(28):10441−10452.
    [40] SCHOENBAUM C A, SCHWARTZ D K, MEDLIN J W. Controlling the surface environment of heterogeneous catalysts using self-assembled monolayers[J]. Acc Chem Res,2014,47(4):1438−1445.
    [41] HUANG W, HUA Q, CAO T, Influence and removal of capping ligands on catalytic colloidal nanoparticles[J]. Catal Lett, 2014, 144(8), 1355–1369.
    [42] YANG Q, KONDRATENKO V A, PETROV S A, et al. Identifying performance descriptors in CO2 hydrogenation over iron-based catalysts promoted with alkali metals[J]. Angew Chem Int Ed, 2022, 61 (22), e202116517.
    [43] KANGVANSURA P, CHEW L M, SAENGSUI W, et al. Product distribution of CO2 hydrogenation by K- and Mn-promoted Fe catalysts supported on N-functionalized carbon nanotubes[J]. Catal Today,2016,275:59−65.
    [44] XIONG H, MOYO M, MOTCHELAHO M A M, et al. Fischer–Tropsch synthesis over model iron catalysts supported on carbon spheres: The effect of iron precursor, support pretreatment, catalyst preparation method and promoters[J]. Appl Catal A-Gen,2010,388(1-2):168−178.
    [45] TWIGG M V, SPENCER M S. Deactivation of supported copper metal catalysts for hydrogenation reactions[J]. Appl Catal A: Gen,2001,212(1-2):161−174.
    [46] VAN DALSEN L, BROWN R E, ROSSIASHTON J A, et al. Sulfonium salts as acceptors in electron donor-acceptor complexes[J]. Angew Chem Int Ed,2023,62(29):e202303104.
    [47] YAO R, WEI J, GE Q, et al. Monometallic iron catalysts with synergistic Na and S for higher alcohols synthesis via CO2 hydrogenation[J]. Appl Catal B,2021,298:120556.
    [48] LUK H T, NOVAK G, SAFONOVA O V, et al. CO2-promoted catalytic process forming higher alcohols with tunable nature at record productivity[J]. ChemCatChem,2020,12(10):2732−2744.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  12
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-14
  • 修回日期:  2024-05-17
  • 录用日期:  2024-05-21
  • 网络出版日期:  2024-07-08

目录

    /

    返回文章
    返回