留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2009年  第37卷  第05期

显示方式:
摘要:
利用流化床反应器并以水蒸气作为气化-流化介质,研究了温度、反应时间、循环数对Fe2O3载氧体反应性的影响。实验表明,载氧体与煤气化产物的反应性随温度升高而增强,且温度越高,反应受化学反应控制时间越短。当温度高于900℃时,煤中碳转化为CO2的比率大于90%,载氧体体现了很好的反应性,但反应温度低于850℃时,比率小于75%。反应温度900℃时,CO2干基浓度随循环数而逐渐降低,CO、CH4浓度增加,且CH4浓度值大于CO。利用XRD、SEM分析了固体反应产物成分与微观形态结构。分析表明,Fe2O3的还原产物为Fe3O4,载氧体颗粒随循环数增加而逐渐烧结。
摘要:
采用量子化学计算方法和实验研究,从微观分子结构和宏观煤灰熔融特性两个层面上,研究了高温下高、低灰熔点煤配煤降低高灰熔点煤煤灰熔融温度的熔融特性和熔融机理。实验和计算结果表明,配煤时,Ca2+作为电子受体进入煤灰中莫来石的晶格,使晶格发生重组,易生成熔点较低的钙长石。莫来石的分子结构较钙长石的要稳定得多,Ca2+进入莫来石晶格后位于由\[SiO4\]4-和\[AlO4\]5-两种四面体形成的网络之间,与O配位的Ca原子削弱了莫来石中的Si—O键,使得配煤后的混煤灰熔融温度降低。量子化学计算得到的灰中矿物质分子结构及相应的物理化学特性,如化学状态、表面化学活性及成键特性等,能够很好的从灰中矿物质分子微观结构特性解释高温下煤灰熔融过程中耐熔矿物与助熔矿物间的反应机理。
摘要:

用数理统计方法研究了渭北中熟煤中稀土元素(REE)在可溶烃和无机矿物中的赋存规律。结果表明,REE在可溶烃和矿物质之间有明显的互补关系,其中,轻稀土(LREE)和重稀土(HREE)又各呈现出不同的分布和赋存特征。但无论是LREE还是HREE,这种赋存分布规律都决定于其离子半径及内部的电子构型变化规律。LREE随着原子序数增大,其在有机的可溶烃和无机矿物中赋存规律性减弱,而HREE随着原子序数的增大,其在可溶烃和无机矿物中赋存规律性增强。这种“互补”和同步消长的关系在可溶烃各族组分之间也存在,并对煤成烃有一定的潜在作用。这是作者以前发现的“稀土元素煤地化效应”的另一种表现形式。

摘要:
考察了预处理方法对含水蓝藻表观黏度的影响,以及蓝藻对神府煤浆成浆浓度、流变性和静态稳定性的影响。结果表明,采用添加化学药剂、高速搅拌、加热等方法对含水蓝藻进行预处理,可以使表观黏度从72mPa·s降低到21.8mPa·s(剪切速率100s-1)。蓝藻结构受到破坏是表观黏度降低的主要原因。含水蓝藻表观黏度的降低有利于蓝藻煤浆成浆浓度的提高。当添加水质量与含水蓝藻质量比为1∶1时,蓝藻煤浆的成浆浓度达到60%。蓝藻的加入提高了神府煤浆的稳定性,使稳定性从4h提高到72h以上。蓝藻煤浆为假塑性流体,剪切变稀。
摘要:
利用热重分析仪对稻秆、麦秆、木屑和煤单独及混合热解特性进行了研究。通过对不同混合比例热解与单独热解对比表明,混合热解中不同生物质起始热解温度、生物质挥发分最大析出温度、煤挥发分最大析出温度随着煤混合比例的变化呈规律性变化。对混合热解实验数据与单独热解参数按混合比例后特性参数分析表明,混合热解导致固体产物产率提高。实验通过对稻秆两种方式的脱灰及脱挥发分处理后混合热解分析,脱挥发分稻秆与脱灰分稻秆对煤的热解都起到了促进作用,证明了生物质中的碱/碱土金属能促进煤在较低温度下热解,硅元素对热解速率起抑制作用。推测生物质与褐煤的共热解中存在协同作用。
摘要:
以石油炼制过程中产生的炼厂气与煤共转化利用为背景,采用小型石英管固定床反应装置,在850℃~1000℃下,对乙烯在空床、彬县煤焦以及石英砂床层上的裂解反应进行了研究。结果表明,乙烯裂解产物包括氢气、甲烷、乙烷及裂解炭,反应温度越高,裂解越彻底,生成的氢气越多;850℃~950℃时,乙烯在彬县焦上初始转化率最高,随着反应的进行逐渐降低到一个较低的平衡值,并且与在石英砂上裂解结果接近。这说明新鲜彬县煤焦对乙烯裂解呈现良好的催化作用,但随着反应进行其催化活性由于裂解生成的炭沉积在煤焦表面而逐渐丧失。1000℃时乙烯在石英砂上和空床裂解转化率均可达到94%,即在此温度下乙烯无需催化剂通过热作用即可接近完全裂解。
摘要:
利用小型固定流化床实验装置研究了催化裂化(FCC)汽油在专门开发的多产低碳烯烃催化剂上的裂解性能。研究表明,反应温度对原料转化率、总低碳烯烃产率的影响最大,剂油比和水油比对低碳烯烃的产率影响较小,而随着重时空速的增大,总低碳烯烃产率略有降低;确定了FCC汽油催化裂解制低碳烯烃的实验室最优反应条件,即反应温度、剂油比、重时空速和水油比分别为660℃、12、15h-1和0.8。根据反应条件与裂解产物的关系提出了催化裂解反应深度函数,并建立裂解产物产率与催化裂解反应深度函数之间的关联模型。随催化裂解反应深度函数的增加,乙烯产率持续增加,而丙烯和丁烯产率出现最大值,利用此模型可以对产物产率进行预测。
摘要:
在固定床微反装置上,采用ZSM-5分子筛催化剂,考察了不同条件下乙烯的低聚反应。结果表明,适宜的条件可以抑制副反应,提高产物中丙烯与丁烯的选择性。随反应时间的延长,催化剂因积炭而失活,乙烯转化率由初始的96.2%降至6h后的41.1%,丙烯和丁烯选择性增加。提高乙烯空速可有效抑制氢转移反应从而提高烯烃选择性,根据不同转化率对应的产物分布,得到了ZSM5催化剂上乙烯低聚的反应路径。乙烯转化率随反应温度的升高先增加后降低,500℃时达到最大值为88.0%,主要产物LPG组分中烷烃居多。提高反应压力有利于低聚反应进行,可以显著提高乙烯转化率,但不利于生成丙烯和丁烯。
摘要:
 采用浸渍法制备了WO3/SiO2催化剂,对其进行了UV-Vis DRS和NH3-TPD表征。将WO3/SiO2作为催化剂,以乙烯和2-丁烯为原料制备丙烯,考察了反应温度、质量空速等因素对歧化反应的影响。实验结果表明,催化剂的最佳WO3担载量为8 %;以8%WO3/SiO2 为催化剂,在反应温度473K~573K、压力3.0MPa、质量空速1.6h-1下,2-丁烯的转化率可保持在80%以上,丙烯的选择性大于89.2%。经过140h的稳定性实验,2-丁烯的转化率和丙烯的选择性略有下降,适当的提高反应温度(由473K增加到513K)可以恢复催化剂的活性。新鲜催化剂表面存在四面体、八面体六价钨物种和体相WO3,适当还原的W物种是歧化活性物种;W负载在催化剂表面引入了新的强酸中心,同时明显增加了总酸量。
摘要:
采用柠檬酸法制备了钙钛矿镍酸镧,并将其作为催化剂的前躯体用于二氧化碳甲烷化反应中。催化剂在400℃~700℃温度下反应气中进行活化处理。活化过程中生成了金属镍颗粒和碳酸氧化镧。金属镍呈高度分散状并被碳酸氧化镧包裹,这种现象有助于反应在400℃和500℃的高温下仍保持高活性和稳定性。XRD、XPS、TEM和H2-TPD等表征测试表明,在活化过程中生成的碳酸氧化镧对反应起到了至关重要的作用。
摘要:
采用连续流动微反装置和原位漫反射红外光谱法考察了Ni/SiO2及添加ZrO2助剂的Ni/ZrO2-SiO2催化剂CO甲烷化催化活性和吸附性能。结果表明,在CO体积分数 1%、空速 5000h-1、常压的反应条件下,200℃时Ni/ZrO2-SiO2催化剂可将CO完全转化。而相同反应条件下Ni/SiO2催化剂上CO的转化率仅为35%,直至270℃时方可将CO完全转化。由此可见,ZrO2助剂的添加明显提高了Ni/ZrO2-SiO2催化剂的CO甲烷化催化活性。同时,ZrO2助剂的添加显著提高了Ni/ZrO2-SiO2催化剂对CO的吸附能力,H2存在时可通过在较低温度时形成较多的桥式羰基氢化物来提高Ni/ZrO2-SiO2催化剂的CO甲烷化催化活性;CO甲烷化反应条件下,Ni/SiO2和Ni/ZrO2-SiO2催化剂上C—O键的削弱和断裂是经由羰基氢化物多氢羰基氢化物的途径,而不是经由C—O键的直接断裂途径。
摘要:
研究了碳纳米管担载的五氧化二钒(V2O5/CNTs)催化剂上NO低温选择催化还原反应(SCR)。与活性炭载体的催化剂作了对比,结果显示,在负载低含量V2O5时碳纳米管较活性炭显示了更好的催化能力,而且在SO2存在下,催化性能有更大幅度的提高。暂态反应实验显示,V2O5/CNTs 催化剂上NO选择催化还原反应遵循EleyRideal机理,即反应发生于吸附态的NH3和气相或弱吸附的NO之间。
摘要:
以堇青石蜂窝陶瓷为载体,采用溶胶-凝胶法在其表面不同质量比交替负载Mn-Ce-O/TiO2和Cu-Ce-O/TiO2得到多层复合催化剂,用于NH3选择性催化还原NO。活性测试表明,在两种活性层的共同作用下,复合催化剂有很好的低温活性和很宽的活性温度窗口。以氨气为还原剂,NO浓度为1025mg/m3,空速12600h-1时,在250℃下NO的转化率就可以达到95%;200℃~300℃下,NO的转化率高于80%。对比实验表明,在此条件下复合催化剂的催化效果明显优于Mn-Ce-O/TiO2/CC和Cu-Ce-O/TiO2/CC单活性相催化剂。BET、XRD、XPS及TPR测试表明,催化剂的高活性与其较大的比表面积、较高含量的无定形分布活性组分、锐钛矿型TiO2、丰富的表面裂纹及良好的氧化还原性能有关。
摘要:
分别用离子交换法和共沉淀法制备了钴铝复合氧化物负载金催化剂,用于催化分解N2O。离子交换法制备的催化剂活性优于共沉淀法制备的催化剂。对于离子交换法制备的催化剂,考察了金负载量、HAuCl4溶液的预处理方式、焙烧温度对催化剂活性的影响,用BET、XRD、H2-TPR等技术对催化剂进行了表征,优化出了催化剂的最佳制备参数:金负载量1.1%、预调节HAuCl4溶液的pH值至9.0、300℃焙烧。在钴铝氧化物中加入适量的助剂Na,提高了Co3+的还原性和催化剂的低温活性,在此基础上制备的1.5%Na/1.1%Au/Co-Al催化剂的低温活性优于1.1%Au/Co-Al和1.5%Na/Co-Al。
摘要:
在以TiO2为载体的基础上,考察了活性组分WO3和V2O5的质量分数以及SiO2和Al2O3的加入对SCR催化剂脱硝性能的影响,筛选出的最佳催化剂组成与某商业催化剂的催化活性、制备方法和催化剂组成进行比较。结果表明,SiO2和Al2O3的加入会降低催化剂的脱硝性能,筛选出的最佳催化剂组成为0.5%V2O5~10%WO3/TiO2;与实验室通过溶胶凝胶法制备载体然后负载活性组分的制备方法不同,商业催化剂是将粒径均匀的锐钛矿型TiO2与玻璃纤维(主要成分为SiO2和Al2O3)通过黏合剂混合制备成型的催化剂载体,然后负载活性组分;由于制备方法和催化剂组成等方面的较大差异,0.5%V2O5~10%WO3/TiO2在低于603K时具有很好的NO脱除率,而商业催化剂在实际烟气温度(603K~663K)范围内,能稳定保持90%以上脱硝率。
摘要:
通过浸渍法改性制得ZnHZSM-5催化剂,并采用XRD、BET、NH3-TPD和Py-IR方法对催化剂进行表征。在连续流动固定床反应装置上考察了Zn负载量和反应条件对甲醇芳构化反应(MTA)的影响。结果表明,0.5%Zn负载量可使芳烃收率提高5%。当Zn负载量超过2%时,不仅不能提高芳烃收率,反而促使甲醇裂解成CO和CO2,Zn负载量为1.0%~2.0%时芳构化活性较高。最佳反应条件为液体体积空速0.36h-1~0.6h-1,温度350℃。并对Zn改性下的甲醇芳构化反应过程进行了探讨。
摘要:
以ReOx/CuO为催化剂,将甲醇选择性氧化一步合成二甲氧基甲烷(DMM)。考察了不同催化剂、反应温度以及Mn作为助剂对反应的影响。并利用XRD、程序升温脱附(NH3-TPD)和程序升温还原(H2-TPR)等手段对该催化剂进行了表征。结果表明,在一定的温度范围内,较高的反应温度有利于提高甲醇的转化率和DMM选择性;少量的Mn(2%)作为结构型助剂加入催化剂,通过改善催化剂表面分散度以及酸碱性,可以提高甲醇的转化率以及DMM的选择性;在非临氧条件下,催化剂表面的晶格氧可以参与反应,将甲醇氧化并最终得到DMM。
摘要:
将水溶性酚醛树脂与金属盐溶液混合形成均相体系,依次通过减压蒸馏、固化、炭化、活化和预硫化处理制备负载金属硫化物的活性炭脱硫剂;研究其对羰基硫(COS)的加氢转化催化活性,考察了担载金属的种类、担载量、反应温度、反应时间和COS入口浓度等因素对催化反应的影响。研究结果表明,水溶性酚醛树脂是制备催化剂炭载体的理想前驱体;NiMo双组分催化剂对COS的加氢催化转化活性明显高于Mo单组分催化剂;在金属硫化物/活性炭催化剂上,COS的催化加氢过程属于内扩散控制,加氢反应气氛中一定浓度含硫组分的存在是抑制催化剂失硫及维持其催化活性的必要条件。
摘要:
采用反相微乳液-金属醇盐水解法制备了K作为镜面阳离子,锰离子作为活性组分的一系列六铝酸盐催化剂K2MnxAl12-xO19-δ(x=0、1.0、1.5、2.0、2.5、3.0) 。通过X射线衍射、差热热重和程序升温还原等实验技术及甲烷燃烧,对催化剂的结构和性质进行了考察。主要考察了不同Mn离子的掺杂量对催化剂结构及对甲烷催化燃烧活性的影响。结果表明,K作为镜面阳离子,不但可以形成完整的六铝酸盐,而且所制备的催化剂具有较高的催化活性。不同的Mn离子掺杂对于催化剂的特性有较大的影响。当Mn的掺杂量在六铝酸盐K2MnxAl12-xO19-δ结构式中为x=1时,制备的催化剂K2MnAl11O19-δ具有较高的催化活性,起燃温度Tl0%为458℃,至676℃甲烷完全转化,Mn掺杂量增多导致晶体结构中出现钙钛矿杂质。
摘要:
以250℃温度下浓硫酸改性后的活性炭为载体,采用浸渍法制备了以MnO2为活性组分的活性炭基的汽油脱硫吸附剂MnO2/AC,考察了吸附剂的制备条件及脱硫条件对脱硫效果的影响。研究结果表明,适宜的吸附剂制备条件为,以Mn(NO3)2为活性组分前驱物,Mn(NO)2浸渍液浓度0.15mol/L、常温下浸渍24h、焙烧温度350℃、焙烧时间2h。该吸附剂在静态吸附温度120℃、吸附时间2h、剂油质量比0.10的条件下可使原料油硫的质量分数从628.6×10-6降至221.5×10-6,脱硫率达到64.8%;在动态吸附温度60℃、空速1.76h-1的条件下,初始流出汽油硫的质量分数降至21.8×10-6,初始脱硫率达到96.5%。
摘要:
采用自由配体法将双水杨醛缩丙二胺席夫碱钴配合物Co(Salprn)封装于Y型分子筛超笼中,并通过X射线衍射、漫反射UV-Vis光谱、FT-IR光谱和差热分析技术对所制备的催化剂进行了表征。该催化剂样品( [Co(Salprn)]-Y)在苯乙烯环氧化反应中较纯配合物Co(Salprn)表现出很高的催化活性。反应条件(包括溶剂、催化剂用量、异丁醛浓度和反应时间)对催化性能有较大影响。研究结果还表明,[Co(Salprn)]-Y对其他烯烃的环氧化也具有较高催化活性。其活性顺序为苯乙烯﹥环己烯﹥环辛烯﹥正辛烯。