官能化碳纳米管负载Ru催化山梨醇氢解制备低碳二元醇

Effect of modified groups of carbon nanotubes on catalytic properties of Ru/CNTs catalysts for hydrogenolysis of sorbitol

  • 摘要: 以不同官能化碳纳米管(原始MCN、氨基化AMCN和石墨化GMCN等)作为载体,通过浸渍法制备了Ru/CNTs催化剂,并应用于山梨醇氢解制1,2-丙二醇和乙二醇反应中。利用XRD、HRTEM、XPS和ICP-AES等方法对催化剂进行了表征,考察了官能团性质、碱助剂等因素对山梨醇氢解性能的影响。结果表明,与Ru/MCN或Ru/GMCN相比较,Ru/AMCN催化剂对山梨醇氢解有更高的活性,在205℃、5.0 MPa氢压条件下,以Ca(OH)2为添加剂,山梨醇的转化率可达99.5%,1,2-丙二醇(1,2-PD)和乙二醇(EG)的总产率为47.7%。催化剂重复利用五次,催化活性无明显下降。

     

    Abstract: Ruthenium catalysts supported on carbon nanotubes with different functional groups (MCN, AMCN and GMCN) were prepared by incipient wetness impregnation with ultrasonic-assistance and used for the hydrogenolysis of sorbitol. The catalysts were characterized by X-ray diffraction (XRD), HRTEM, X-ray photoelectron spectroscopy (XPS) and ICP-AES. The effects of functional group species, and base additives on the catalytic performance of Ru/CNTs in the sorbitol hydrogenolysis reaction were investigated. Nearly 99.5% of sorbitol conversion and 47.7% total yield of ethylene glycol and 1,2-propanediol (1,2-PD) could be achieved over Ru/AMCN under mild reaction conditions (205℃, 5.0 MPa), using Ca(OH)2 as additive. The conversion of sorbitol and the selectivity to ethylene glycol (EG) and 1,2-propanediol (1,2-PD) did not decrease over the five repeated runs, which confirmed that the Ru/AMCN catalyst exhibited high stability in the aqueous hydrogenolysis of sorbitol to glycols.

     

/

返回文章
返回