留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

苯和环己烯分步制联环己烷过程催化剂设计及性能提升研究

刘瑞林 王森 孟繁春 李卓 杨慧敏 赵世超 覃勇 张斌

刘瑞林, 王森, 孟繁春, 李卓, 杨慧敏, 赵世超, 覃勇, 张斌. 苯和环己烯分步制联环己烷过程催化剂设计及性能提升研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60457-3
引用本文: 刘瑞林, 王森, 孟繁春, 李卓, 杨慧敏, 赵世超, 覃勇, 张斌. 苯和环己烯分步制联环己烷过程催化剂设计及性能提升研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60457-3
LIU Ruilin, WANG Sen, MENG Fanchun, LI Zhuo, YANG Huimin, ZHAO Shichao, QIN Yong, ZHANG Bin. The study of design and performance improvement of catalysts for the stepwise production of bicyclohexane from benzene and cyclohexene[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60457-3
Citation: LIU Ruilin, WANG Sen, MENG Fanchun, LI Zhuo, YANG Huimin, ZHAO Shichao, QIN Yong, ZHANG Bin. The study of design and performance improvement of catalysts for the stepwise production of bicyclohexane from benzene and cyclohexene[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60457-3

苯和环己烯分步制联环己烷过程催化剂设计及性能提升研究

doi: 10.1016/S1872-5813(24)60457-3
基金项目: 国家自然科学基金 (22072172,22202227),国家杰出青年科学基金(21825204),中国科学院青年创新促进会(Y2021056),榆林学院与大连清洁能源国家实验室合作基金(YLU-DNL Fund 2022007)和山西省科技创新团队专项资金(202304051001007)资助
详细信息
    通讯作者:

    Tel: 0351-4040420 , E-mail: zhangbin2009@sxicc.ac.cn

  • 中图分类号: O643

The study of design and performance improvement of catalysts for the stepwise production of bicyclohexane from benzene and cyclohexene

Funds: The project was supported by National Natural Science Foundation of China (22072172、22202227), National Science Fund for Distinguished Young Scholars (21825204), the Youth Innovation Promotion Association CAS (Y2021056), Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (YLU-DNL Fund 2022007), the special fund for Science and Technology Innovation Teams of Shanxi Province (202304051001007).
  • 摘要: 联环己烷是一种高储氢密度、低沸点储氢试剂。与联苯加氢相比,苯和环己烯烷基化制环己基苯再加氢是一种有望实现大规模制备联环己烷的途径。在成熟的烷基化技术基础上,需进一步开展高效环己基苯加氢催化剂的研发。本研究首先使用酸化的USY分子筛催化苯和环己烯烷基化至环己基苯,获得100%转化率和产物选择性。进一步通过原子层沉积(ALD)在γ-Al2O3表面预先沉积不同厚度的TiO2膜后再负载铂颗粒制得Pt/TiO2/γ-Al2O3催化剂,研究TiO2膜提升催化剂环己基苯加氢性能机制。TEM、CO脉冲吸附、CO-DRIFTs、准原位XPS、H-D交换和H2-TPR表征显示,与Pt/γ-Al2O3相比,Pt/TiO2/γ-Al2O3催化剂不改变Pt颗粒的分散度,但能够形成新的Pt-TiO2相互作用,提高铂表面电子密度、平面活性位点比例和降低氢溢流能垒,提升环己烷基苯加氢性能。研究为进一步发展联环己烷有机液态储氢试剂提供理论支持。相关金属-载体相互作用调控策略可应用于其他芳香性分子高效加氢催化剂的研制。
  • 图  1  (a) 不同催化剂上环己基苯加氢制联环己烷性能;(b) Pt/30TiO2/γ-Al2O3催化剂稳定性测试(反应条件:1.5 mL环己基苯,5 mL正庚烷,20 mg催化剂,反应温度50 ℃,3 MPa H2,反应时间1 h)

    Figure  1  (a) Catalytic performance of different catalysts for cyclohexylbenzene hydrogenation, (b) Stability test of Pt/30TiO2/γ-Al2O3

    图  2  (a) Pt/γ-Al2O3、(b) Pt/10TiO2/γ-Al2O3、(c)、(d) Pt/30TiO2/γ-Al2O3的TEM图像

    Figure  2  TEM image of Pt/γ-Al2O3 (a), Pt/10TiO2/γ-Al2O3 (b), Pt/30TiO2/γ-Al2O3 (c), (d)

    图  3  Pt/γ-Al2O3和Pt/nTiO2/γ-Al2O3催化剂的Pt 4d XPS谱图(a);还原后催化剂的Pt 4d XPS图谱(b);还原后Pt/nTiO2/γ-Al2O3催化剂的Ti 2p XPS谱图(c)

    Figure  3  Pt 4d XPS spectra of Pt/γ-Al2O3 and Pt/nTiO2/γ-Al2O3 (a), Pt 4d XPS spectra of reduced catalysts (b), Ti 2p XPS spectra of reduced Pt/nTiO2/γ-Al2O3 catalysts (c)

    图  4  (a) Pt/γ-Al2O3和Pt/nTiO2/γ-Al2O3催化剂的CO-DRIFTS谱图; (b) 拟合结果归一化后不同峰所占的比例

    Figure  4  CO-DRIFTS of Pt/γ-Al2O3 and Pt/nTiO2/γ-Al2O3 catalysts, (b) The proportion of different peaks after the normalization of fitting results

    图  5  (a) Pt/γ-Al2O3的H-D交换红外光谱谱图;(b) Pt/30TiO2/γ-Al2O3的H-D交换红外光谱谱图;(c) Pt/γ-Al2O3和Pt/nTiO2/γ-Al2O3催化剂的H-D交换速率对比

    Figure  5  (a) FT-IR spectra of the Pt/γ-Al2O3 during H-D exchange, (b) IR spectra of the Pt/30TiO2/γ-Al2O3 during H-D exchange, (c) H-D exchange rates of Pt/γ-Al2O3 and Pt/nTiO2/γ-Al2O3 catalysts

    图  6  (a) Pt/γ-Al2O3和Pt/nTiO2/γ-Al2O3催化剂H2-TPR谱图;(b) 不同温度H2消耗量对比

    Figure  6  (a) H2-TPR and (b) H2 consumption at different temperatures for Pt/γ-Al2O3 and Pt/nTiO2/γ-Al2O3 catalysts

    表  1  不同催化剂的苯和环己烯烷基化反应性能

    Table  1  Catalytic performance of different catalysts for alkylation of benzene and cyclohexene

    Samples Si/Al ratio Conversion/% Selectivity/%
    cycloxylbenzene 1-methyclopentylbenzene
    5.4 0
    HY 5 0
    Dry CT-275 ion-exchange resins 100 84 16
    USY 13−17 0
    Dry USY 13−17 55.4 100
    Acidified USY 13−17 100 100
    Reaction conditions: 4.6 mmol cyclohexene, 4mL benzene, 150 mg catalyst, 150 ℃ reaction temperature, 3MPa N2, 4 h reaction time.
    下载: 导出CSV

    表  2  不同催化剂Pt和Ti元素负载量、分散度、Pt颗粒尺寸

    Table  2  Pt and Ti loading, dispersion and Pt particle diameter of different catalysts

    Sample Loading/%a Dispersion/% b dTEM/nm c
    Pt Ti
    Pt/γ-Al2O3 9.2 19.4 1.6±0.3
    Pt/10TiO2/γ-Al2O3 15.4 2.1 19.1 2.0±0.3
    Pt/20TiO2/γ-Al2O3 16.0 4.2 15.9 1.9±0.3
    Pt/30TiO2/γ-Al2O3 17.8 6.5 16.2 2.3±0.4
    Pt/40TiO2/γ-Al2O3 18.3 7.8 15.1 2.0±0.3
    Note: a: ICP-OES results; b: CO pulse adsorption; c: TEM particle size distribution statistics.
    下载: 导出CSV
  • [1] BROOM D P, HIRSCHER M. Irreproducibility in hydrogen storage material research[J]. ENERG ENVIRON,2016,9(11):3368−80. doi: 10.1039/C6EE01435F
    [2] YONGYAN X, YUAN D, WEI L, et al. Research progress of hydrogen energy and metal hydrogen storage materials[J]. SUSTAIN ENERGY TECHN,2022,55:102974.
    [3] 齐随涛, 黄俊, 陈昊, et al. 有机氢化物可逆储氢循环中脱氢催化剂的研究进展[J]. 化学学报,2012,70(24):2467−74. doi: 10.6023/A12080603

    QI SuiTao, HUANG Jun, CHEN Hao, et al. Development of dehydrogenation catalyst for reversible hydrogen storage in organic hydrides[J]. ACTA CHIM SINICA,2012,70(24):2467−74. doi: 10.6023/A12080603
    [4] DONG Z, MUKHTAR A, LIN H. Heterogeneous catalysis on liquid organic hydrogen carriers[J]. TOP CATAL,2021,64:481−508. doi: 10.1007/s11244-021-01458-5
    [5] BINIWALE R B, RAYALU S, DEVOTTA S, et al. Chemical hydrides: A solution to high capacity hydrogen storage and supply[J]. INT J HYDROGEN ENERG,2008,33(1):360−5. doi: 10.1016/j.ijhydene.2007.07.028
    [6] CHERNOVA M M, MINAYEV P P, MARTYNENKO Y A, et al. An effect of a support nature and active phase morphology on catalytic properties of Ni-containing catalysts in hydrogenation of biphenyl [J]. RUSS J APPL CHEM+, 2018.
    [7] 苏文维. Ru/SiO2催化剂的制备及其联苯加氢制联环己烷性能研究 [D], 2021.

    SU Wenwei. Ru/SiO2 catalysts for the hydrogenation of biphenyl to bicyclohexyl [D]. Zhengzhou university, 2021.)
    [8] SU W, YANG J, ZHANG M, et al. Highly dispersed and ultra-small Ru nanoparticles deposited on silica support as highly active and stable catalyst for biphenyl hydrogenation[J]. MOL CATA,2021,508:111577. doi: 10.1016/j.mcat.2021.111577
    [9] 王闻年, 高焕新, 杨为民. 含钌双功能催化剂上苯加氢烷基化反应性能[J]. 化学反应工程与工艺,2023,39(3):201−10.

    WANG Wennian, GAO Huanxin, YANG Weimin. Performance of benzene hydroalkylation over Ru-containing bifunctional catalysts[J]. CHEM REACT ENG TECHNOL,2023,39(3):201−10.
    [10] WANG W, WANG G, GAO H, et al. Progress in synthesis of cyclohexylbenzene and the catalysts[J]. CHEM INDENG PROG,2019,38(1):324−33.
    [11] FANFEI M, LINHUI D, WEI M, et al. High efficiency catalyst of modified y molecular sieve by rare earth La3+ catalyzed the synthesis of cyclohexylbenzene from benzene and cyclohexene[J]. CATAL LETT,2022,152(3):745−54. doi: 10.1007/s10562-021-03676-8
    [12] LU L, RONG Z, DU W, et al. Selective hydrogenation of single benzene ring in biphenyl catalyzed by skeletal Ni[J]. CHEMCATCHEM,2009,1(3):369−71. doi: 10.1002/cctc.200900141
    [13] KALENCHUK A N, BOGDAN V I, DUNAEV S F, et al. Dehydrogenation of polycyclic naphthenes on a Pt/C catalyst for hydrogen storage in liquid organic hydrogen carriers[J]. FUEL PROCESS TECHNOL,2018,169:94−100. doi: 10.1016/j.fuproc.2017.09.023
    [14] 宋宇淙, 丁晓墅, 赵新强, et al. 保留取代基团的苯环选择加氢反应催化剂研究进展[J]. 精细化工,2023,40(10):2098−111.

    SONG Yucong, DING Xiaoshu, ZHAO Xinqiang, et al. Research progress on catalysts for selective hydrogenation of benzene rings with tetained substituent groups[J]. FINE CHEMICALS,2023,40(10):2098−111.
    [15] YU P, YANG Z, GU Z, et al. Catalytic reaction coupling of propane dehydrogenation with nitrobenzene hydrogenation over Pt/Al2O3[J]. CATAL COMMUN,2022,166:106449. doi: 10.1016/j.catcom.2022.106449
    [16] CHEN-HUI C, SEUNG YONG L, SANG SOO H. Origin of enhanced toluene hydrogenation by Pt–Ru catalysts for an efficient liquid organic hydrogen carrier[J]. INT J HYDROGEN ENERG,2023,48(86):33590−8. doi: 10.1016/j.ijhydene.2023.05.118
    [17] MIN HYE J, JUNGSEOB S, JINHO O, et al. Cerium-modified Pt/Al2O3 for NH3 synthesis by NO reduction with H2[J]. APPL SURF SCI,2023,638:158067. doi: 10.1016/j.apsusc.2023.158067
    [18] MENG F, YANG X, ZHAO S, et al. Shifting reaction path for levulinic acid aqueous-phase hydrogenation by Pt-TiO2 metal-support interaction[J]. APPL CATAL B ENVIRON,2023,324:122236. doi: 10.1016/j.apcatb.2022.122236
    [19] MENG F, YANG X, ZHAO S, et al. Tailoring the Brønsted acidity of Ti-OH species by regulating Pt-TiO2 interaction[J]. CHEMSUSCHEM,2023,n/a(n/a):e202301410.
    [20] BERGMAN S L, GRANESTRAND J, TANG Y, et al. In-situ characterization by Near-Ambient Pressure XPS of the catalytically active phase of Pt/Al2O3 during NO and CO oxidation[J]. APPL CATAL B ENVIRON,2017,220:506−11.
    [21] SHEN M, LV L, WANG J, et al. Study of Pt dispersion on Ce based supports and the influence on the CO oxidation reaction[J]. CHEM ENG J,2014,255:40−8. doi: 10.1016/j.cej.2014.06.058
    [22] FANCHUN M, XINCHUN Y, SHICHAO Z, et al. Shifting reaction path for levulinic acid aqueous-phase hydrogenation by Pt-TiO2 metal-support interaction[J]. APPL CATAL B ENVIRON,2022,324:122236.
    [23] CAROSSO M, FOVANNA T, RICCHEBUONO A, et al. Gas phase vs. liquid phase: monitoring H2 and CO adsorption phenomena on Pt/Al2O3 by IR spectroscopy[J]. CATALSCI TECHNOL,2022,12(4):1359−67. doi: 10.1039/D1CY02233D
    [24] GE H, ZHANG B, GU X, et al. A Tandem Catalyst with Multiple Metal Oxide Interfaces Produced by Atomic Layer Deposition[J]. ANGEW CHEM INT EDIT,2016,55(25):7081−5. doi: 10.1002/anie.201600799
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  20
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-14
  • 修回日期:  2024-04-04
  • 录用日期:  2024-04-07
  • 网络出版日期:  2024-05-21

目录

    /

    返回文章
    返回