留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni/γ-Al2O3催化富氢生物质热解气蒸汽重整制氢实验研究

王体朋 胡锶菡 刘吉 胡斌 孙怀得 张镇西 陆强

王体朋, 胡锶菡, 刘吉, 胡斌, 孙怀得, 张镇西, 陆强. Ni/γ-Al2O3催化富氢生物质热解气蒸汽重整制氢实验研究[J]. 燃料化学学报(中英文), 2023, 51(11): 1691-1700. doi: 10.19906/j.cnki.JFCT.2023046
引用本文: 王体朋, 胡锶菡, 刘吉, 胡斌, 孙怀得, 张镇西, 陆强. Ni/γ-Al2O3催化富氢生物质热解气蒸汽重整制氢实验研究[J]. 燃料化学学报(中英文), 2023, 51(11): 1691-1700. doi: 10.19906/j.cnki.JFCT.2023046
WANG Ti-peng, HU Si-han, LIU Ji, HU Bin, SUN Huai-de, ZHANG Zhen-xi, LU Qiang. Experimental study of hydrogen production via the steam reforming of hydrogen-rich biomass pyrolysis gas under the catalysis of Ni/γ-Al2O3[J]. Journal of Fuel Chemistry and Technology, 2023, 51(11): 1691-1700. doi: 10.19906/j.cnki.JFCT.2023046
Citation: WANG Ti-peng, HU Si-han, LIU Ji, HU Bin, SUN Huai-de, ZHANG Zhen-xi, LU Qiang. Experimental study of hydrogen production via the steam reforming of hydrogen-rich biomass pyrolysis gas under the catalysis of Ni/γ-Al2O3[J]. Journal of Fuel Chemistry and Technology, 2023, 51(11): 1691-1700. doi: 10.19906/j.cnki.JFCT.2023046

Ni/γ-Al2O3催化富氢生物质热解气蒸汽重整制氢实验研究

doi: 10.19906/j.cnki.JFCT.2023046
基金项目: 国家自然科学基金(52006069, 31971793, 52276189)和江苏省自然科学基金(BK20221248)资助
详细信息
    通讯作者:

    Tel: 01061772030, E-mail: liujipower@126.com

  • 中图分类号: TQ203.2

Experimental study of hydrogen production via the steam reforming of hydrogen-rich biomass pyrolysis gas under the catalysis of Ni/γ-Al2O3

Funds: The project was supported by the National Natural Science Foundation of China (52006069,31971793, 52276189) and Natural Science Foundation of Jiangsu Province (BK20221248)
  • 摘要: 本实验对比研究了富氢生物质热解气和甲烷(CH4)蒸汽重整,探讨了富氢生物质热解气组分对CH4等低烃重整反应的影响机理,并揭示了Ni/γ-Al2O3催化剂在富氢热解气蒸汽重整反应中的作用机制。H2通过提供还原气氛使得催化剂表面高活性Ni0维持动态平衡,从而提高其催化活性;同时,生物质热解气对过渡碳向石墨碳的转化产生抑制作用,降低了积炭对Ni/γ-Al2O3催化活性的影响。其次,考察了反应温度、水碳比(S/C)、空速等操作条件对富氢热解气蒸汽重整反应的影响规律。反应温度和S/C的提高有效促进了CH4蒸汽重整反应,同时抑制了积炭的产生;随着反应空速的提高,CH4蒸汽重整反应的竞争性减弱,水煤气变换反应、CH4干重整反应的竞争性逐渐增加,使得CH4转化受到抑制。本实验为生物质热解气蒸汽重整反应机理研究及高效催化剂开发奠定了基础。
  • FIG. 2768.  FIG. 2768.

    FIG. 2768.  FIG. 2768.

    图  1  生物质热解气蒸汽重整制氢装置示意图

    Figure  1  Device diagram of biomass pyrolysis gas steam reforming for hydrogen production

    图  2  不同原料气蒸汽催化重整的$ {x}_{\text{CH}_{\text{4}}} $$ {{n}}_{{\text{H}_{2}}}/{{n}}_{\text{CO}} $随反应时间的变化

    Figure  2  Variation of $ {x}_{\text{CH}_{4}} $ and $ {{n}}_{\text{H}_{2}}/{{n}}_{\text{CO}} $ against reaction time in steam catalytic reforming of different feed gases

    图  3  14Ni/γ-Al2O3催化剂的孔径分布

    Figure  3  Distribution of pore size for the 14Ni/γ-Al2O3 catalysts

    图  4  14Ni/γ-Al2O3催化剂的XRD谱图

    Figure  4  XRD patterns of 14Ni/γ-Al2O3 catalysts

    图  5  14Ni/γ-Al2O3催化剂的XPS谱图

    Figure  5  XPS spectra of 14Ni/γ-Al2O3 catalysts (a): Ni 2p; (b): C 1s

    图  6  不同Ni负载量Ni/γ-Al2O3催化剂催化生物质热解气重整对比

    Figure  6  Comparative analysis of biomass pyrolysis gas reforming catalyzed by Ni/γ-Al2O3 catalyst with different Ni loading

    (a): Variation of $ {x}_{\text{CH}_{4}} $ and $ {{n}}_{\text{H}_{2}}/{{n}}_{\text{CO}} $ with reaction time; (b): Components of gas product and $ {{I}}_{\text{H}_{2}} $

    图  7  不同反应温度下14Ni/γ-Al2O3催化剂催化生物质热解气重整对比

    Figure  7  Comparative analysis of biomass pyrolysis gas reforming catalyzed by 14Ni/γ-Al2O3 catalyst at different reaction temperature

    (a): Variation of $ {x}_{\text{CH}_{4}} $ and $ {{n}}_{\text{H}_{2}}/{{n}}_{\text{CO}} $ with reaction time; (b): Components of gas product and $ {{I}}_{\text{H}_{2}} $

    图  8  不同S/C比下14Ni/γ-Al2O3催化生物质热解气重整对比

    Figure  8  Comparative analysis of biomass pyrolysis gas reforming catalyzed by 14Ni/γ-Al2O3 catalyst at different S/C ratios

    (a): Variation of $ {x}_{\text{CH}_{4}} $ and $ {{n}}_{\text{H}_{2}}/{{n}}_{\text{CO}} $ with reaction time; (b): Components of gas product and $ {{I}}_{\text{H}_{2}} $

    图  9  不同反应空速下14Ni/γ-Al2O3催化生物质热解气重整对比

    Figure  9  Comparative analysis of biomass pyrolysis gas reforming catalyzed by 14Ni/γ-Al2O3 catalyst at different Reaction space velocity

    (a): Variation of $ {x}_{\text{CH}_{4}} $ and $ {{n}}_{\text{H}_{2}}/{\text{n}}_{\text{CO}} $ with reaction time; (b): Components of gas product and $ {{I}}_{\text{H}_{2}} $

    表  1  生物质热解气和CH4蒸汽催化重整进出口流量和积炭量对比

    Table  1  Comparison of inlet and outlet flow and carbon deposition for the steam catalytic reforming of biomass pyrolysis gas and CH4

    Type of gasCarbon deposition /(g·gcatal−1·h−1)
    CH4H2COCO2C2H4
    Biomass pyrolysis gasinlet flow /(mol·min−1)0.380.570.340.230.070.147
    outlet flow /(mol·min−1)0.032.340.590.34
    CH4inlet flow /(mol·min−1)1.570.037
    outlet flow /(mol·min−1)0.382.970.980.11
    下载: 导出CSV

    表  2  催化剂的物理吸附

    Table  2  Physical adsorption test results of catalysts

    SampleBET surface area /
    (m2·g−1)
    Pore volume /
    (cm3·g−1)
    Average pore diameter /nm
    14Ni/Al2O3
    before reaction
    127.70.4915.2
    14Ni/Al2O3
    after CH4 reforming
    103.50.4717.7
    14Ni/Al2O3
    after biomass pyrolysis gas reforming
    103.10.4918.5
    下载: 导出CSV

    表  3  不同Ni负载量下的积炭量

    Table  3  Catalyst deposition under different Ni loading

    Nickel loading w/%101418
    Catalyst deposition /(g·gcata−1·h−1)0.1000.1470.107
    下载: 导出CSV

    表  4  不同反应条件下的积炭量

    Table  4  Deposition under different reaction conditions

    Reaction conditionsDeposition /(g·gcata−1·h−1)
    Temperature /℃600700800900
    0.1470.0800.0600.040
    S/C ratio13510
    0.1470.0920.0640.036
    Space velocity /h−112004800960012800
    0.1470.1200.1620.190
    下载: 导出CSV
  • [1] TAIBI E M R, VANHOUDT W. Hydrogen from renewable power: Technology outlook for the energy transition[R]. IRENA, 2018.
    [2] PIVOVAR B R N, SATYAPAL S. Hydrogen at scale (H2@scale): Key to a clean, economic, and sustainable energy system[J]. Electrochem Soc Inte,2018,27(1):47−52. doi: 10.1149/2.F04181if
    [3] CHAUBEY R, SAHU S, JAMES O O, MAITY J. A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources[J]. Renewable Sustainable Energy Rev,2013,23:443−462. doi: 10.1016/j.rser.2013.02.019
    [4] 刘尚泽, 于青, 管健. 氢能利用与产业发展现状及展望[J]. 能源与节能,2022,(11):18−21. doi: 10.3969/j.issn.2095-0802.2022.11.004

    LIU Shang-ze, YU Qing, GUAN Jian. Current situation and prospects of hydrogen energy utilization and industrial development[J]. Energy Energy Cons,2022,(11):18−21. doi: 10.3969/j.issn.2095-0802.2022.11.004
    [5] 田江南, 蒋晶, 罗扬, 马雄. 绿色氢能技术发展现状与趋势[J]. 分布式能源,2021,6(2):8−13.

    TIAN Jiang-nan, JIANG Jin, LUO Yang, MA Xiong. Development status and trend of green hydrogen energy technology[J]. Distr Energy,2021,6(2):8−13.
    [6] 李果, 张安东, 万震, 李志合, 王绍庆, 李宁, 张鹏. 生物油及其衍生物催化重整制氢研究进展[J]. 燃料化学学报,2023,51(4):444−457.

    LI Guo, ZHANG An-dong, WANG Zhen, LI Zhi-he, WANG Shao-qin, LI Ning, ZHANG Peng. Research progress on catalytic reforming of bio-oil and its derivatives for hydrogen production[J]. J Fuel Chem Technol,2023,51(4):444−457.
    [7] 宋春山. 面向氢能源、燃料电池和二氧化碳减排的制氢途径的选择(英文)[J]. 燃料化学学报,2005,33(6):641−649.

    SONG Chun-shan. Overview of hydrogen production options for developing hydrogen energy, fuel processing for fuel cells and mitigation of CO2 emissions[J]. J Fuel Chem Technol,2005,33(6):641−649.
    [8] QUAN C, GAO N, WU C. Utilization of NiO/porous ceramic monolithic catalyst for upgrading biomass fuel gas[J]. J Energy Inst,2018,91(3):331−338. doi: 10.1016/j.joei.2017.02.008
    [9] ZENG W, LI L, SONG M, WU X, LI G, HU C. The effect of different atmosphere treatments on the performance of Ni/Nb-Al2O3 catalysts for methane steam reforming[J]. Int J Hydrogen Energy,2022,48(16):6358−6369.
    [10] HIBLOT H, ZIEGLER-DEVIN I, FOURNET R, GLUADE P. A. Steam reforming of methane in a synthesis gas from biomass gasification[J]. Int J Hydrogen Energy,2016,41(41):18329−18338. doi: 10.1016/j.ijhydene.2016.07.226
    [11] HAO Q, WANG C, LU D, WANG Y, LI D, LI G. Production of hydrogen-rich gas from plant biomass by catalytic pyrolysis at low temperature[J]. Int J Hydrogen Energy,2010,35(17):8884−8890. doi: 10.1016/j.ijhydene.2010.06.039
    [12] LUO S, FU J, ZHOU Y, YI C. The production of hydrogen-rich gas by catalytic pyrolysis of biomass using waste heat from blast-furnace slag[J]. Renewable Energy,2017,101:1030−1036. doi: 10.1016/j.renene.2016.09.072
    [13] WANG Y, HUANG L, ZHANG T, WANG Q. Hydrogen-rich syngas production from biomass pyrolysis and catalytic reforming using biochar-based catalysts[J]. Fuel,2022,313:123006. doi: 10.1016/j.fuel.2021.123006
    [14] 尚双, 郭朝强, 兰奎, 李泽善, 秦振华, 贺维韬, 李建芬. Ni/Zr-MOF催化剂的制备及其在生物质热解中的应用[J]. 燃料化学学报,2019,47(9):1067−1074.

    SHANG Shuang, GUO Chao-qiang, LAN Kui, LI Ze-shan, QIN Zhen-hua, HE Wei-tao, LI Jian-fen. Preparation of Ni/Zr-MOF catalyst and its application in pyrolysis of biomass[J]. J Fuel Chem Technol,2019,47(9):1067−1074.
    [15] 陈冠益, 李强, SPLIETHOFF H, 王福全. 生物质热解气化制取氢气[J]. 太阳能学报,2004,(6):776−781.

    CHEN Guan-yi, LI Qiang, SPLIETHOFF H, WANG Fu-quan. Hydrogen production from biomass pyrolysis and gasification[J]. Acta Energ Sol Sin,2004,(6):776−781.
    [16] XU X, JIANG E, WANG M, XU Y. Dry and steam reforming of biomass pyrolysis gas for rich hydrogen gas[J]. Biomass Bioenergy,2015,78:6−16. doi: 10.1016/j.biombioe.2015.03.015
    [17] ARKATOVA L A. The deposition of coke during carbon dioxide reforming of methane over intermetallides[J]. Catal Today,2010,157(1/4):170−176. doi: 10.1016/j.cattod.2010.03.003
    [18] 赵云莉. 甲烷重整制氢镍基催化剂制备及活性评价研究[D]. 太原: 太原理工大学, 2009.

    ZHAO Yun-li. Study of methane catalytic reforming to hydrogen on nickel-based catalysts[D]. Taiyuan: Taiyuan University of Technology, 2009
    [19] XU J, CHEN L, TAN K, BORGNA A, SAEYS M. Effect of boron on the stability of Ni catalysts during steam methane reforming[J]. J Catal,2009,261(2):158−165. doi: 10.1016/j.jcat.2008.11.007
    [20] KOO K Y, LEE S-H, JUNG U H, ROH H-S. Syngas production via combined steam and carbon dioxide reforming of methane over Ni–Ce/MgAl2O4 catalysts with enhanced coke resistance[J]. Fuel Process Technol,2014,119:151−157. doi: 10.1016/j.fuproc.2013.11.005
    [21] SON I H, LEE S J, SOON A, ROH H, LEE H. Steam treatment on Ni/γ-Al2O3 for enhanced carbon resistance in combined steam and carbon dioxide reforming of methane[J]. Appl Catal B: Environ,2013,134-135:103−109. doi: 10.1016/j.apcatb.2013.01.001
    [22] 侯悦, 张荣俊, 陆强, 杨少霞, 李明丰. 基于改性Ni/γ-Al2O3催化剂的电催化甲烷水蒸气重整的研究[J]. 燃料化学学报,2018,46(4):489−499.

    HOU Yue, ZHANG Rong-jun, LU Qiang, YANG Shao-xia, LI Ming-feng. Research on electro-catalytic steam reforming of methane with modified Ni/γ-Al2O3 catalysts[J]. J Fuel Chem Technol,2018,46(4):489−499.
    [23] ZHAO Q, WANG Y, WANG Y, LI L, ZENG W, LI G, HU C. Steam reforming of CH4 at low temperature on Ni/ZrO2 catalyst: Effect of H2O/CH4 ratio on carbon deposition[J]. Int J Hydrogen Energy,2020,45(28):14281−14292. doi: 10.1016/j.ijhydene.2020.03.112
    [24] HE L, HU S, YIN X, XU J, HAN H, LI H, REN Q. SU S, WANG Y, XIANG J. Promoting effects of Fe-Ni alloy on co-production of H2 and carbon nanotubes during steam reforming of biomass tar over Ni-Fe/α-Al2O3[J]. Fuel,2020,276:118116. doi: 10.1016/j.fuel.2020.118116
    [25] RAN M, SUN W, LIU Y, CHU W, JIANG C. Functionalization of multi-walled carbon nanotubes using water-assisted chemical vapor deposition[J]. J Solid State Chem,2013,197:517−522. doi: 10.1016/j.jssc.2012.08.014
    [26] 李春义, 余长春, 沈师孔. Ni/Al2O3催化剂上CH4部分氧化制合成气反应积碳的原因[J]. 催化学报,2001,(4):377−382.

    LI Chun-yi, YU Chang-chun, SHEN Shi-kong. Causes of carbon deposition in partial oxidation of CH4 to syngas over Ni/Al2O3 catalyst[J]. Chin J Catal,2001,(4):377−382.
    [27] BEJ B, PRADHAN N C, NEOGI S. Production of hydrogen by steam reforming of methane over alumina supported nano-NiO/SiO2 catalyst[J]. Catal Today,2013,207:28−35. doi: 10.1016/j.cattod.2012.04.011
    [28] 胡捷, 贺德华, 李映伟, 张昕, 王晖. Ni/ZrO2催化剂上甲烷水蒸气重整反应的研究[J]. 燃料化学学报,2004,32(1):98−103.

    HU Jie, HE De-hua, LI Ying-wei, ZHANG xin, WANG Hui. Study on steam reforming of methane over Ni/ZrO2 catalyst[J]. J Fuel Chem Technol,2004,32(1):98−103.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  412
  • HTML全文浏览量:  121
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-16
  • 修回日期:  2023-04-25
  • 录用日期:  2023-05-08
  • 网络出版日期:  2023-05-24
  • 刊出日期:  2023-11-13

目录

    /

    返回文章
    返回